Table of Contents
Journal of Composites
Volume 2013 (2013), Article ID 808764, 12 pages
http://dx.doi.org/10.1155/2013/808764
Research Article

Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

1School of Mechanical Engineering, R.G.M College of Engineering & Technology, Nandyal, Kurnool, Andhra Pradesh 518 501, India
2Department of Mechanical Engineering, J.N.T.U.H College of Engineering, J.N.T. University, Hyderabad, Andhra Pradesh 500 085, India
3The School of Engineering & Technology, Sri Padmavathi Mahila Visvavidyalayam, Women’s University, Tirupati, Chittoor, Andhra Pradesh 517 502, India

Received 29 May 2013; Revised 7 October 2013; Accepted 11 October 2013

Academic Editor: Serge Abrate

Copyright © 2013 B. Sidda Reddy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Javaheri and M. R. Eslami, “Buckling of functionally graded plates under in-plane compressive loading,” Journal of Applied Mathematics and Mechanics, vol. 82, no. 4, pp. 277–283, 2002. View at Google Scholar
  2. S. Abrate, “Functionally graded plates behave like homogeneous plates,” Composites B, vol. 39, no. 1, pp. 151–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Mohammadi, A. R. Saidi, and E. Jomehzadeh, “Levy solution for buckling analysis of functionally graded rectangular plates,” Applied Composite Materials, vol. 17, no. 2, pp. 81–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mahdavian, “Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform in-plane compressive loading,” Journal of Solid Mechanics, vol. 1, no. 3, pp. 213–225, 2009. View at Google Scholar · View at Scopus
  5. E. Feldman and J. Aboudi, “Buckling analysis of functionally graded plates subjected to uniaxial loading,” Composite Structures, vol. 38, no. 1–4, pp. 29–36, 1997. View at Google Scholar · View at Scopus
  6. B. A. S. Shariat, R. Javaheri, and M. R. Eslami, “Buckling of imperfect functionally graded plates under in-plane compressive loading,” Thin-Walled Structures, vol. 43, no. 7, pp. 1020–1036, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. V. Tung and N. D. Duc, “Nonlinear analysis of stability for functionally graded plates under mechanical and thermal loads,” Composite Structures, vol. 92, no. 5, pp. 1184–1191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” ASME Journal of Applied Mechanics, vol. 12, no. 2, pp. 69–77, 1945. View at Google Scholar
  9. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates,” ASME Journal of Applied Mechanics, vol. 18, pp. 31–38, 1951. View at Google Scholar
  10. H. T. Thai and T. P. Vo, “A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates,” Applied Mathematical Modelling, vol. 37, no. 5, pp. 3269–3281, 2013. View at Publisher · View at Google Scholar
  11. J. Yang, K. M. Liew, and S. Kitipornchai, “Second-order statistics of the elastic buckling of functionally graded rectangular plates,” Composites Science and Technology, vol. 65, no. 7-8, pp. 1165–1175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Mohammadi, A. R. Saidi, and E. Jomehzadeh, “A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges,” Proceedings of the Institution of Mechanical Engineers C, vol. 224, no. 9, pp. 1831–1841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Zhao, Y. Y. Lee, and K. M. Liew, “Mechanical and thermal buckling analysis of functionally graded plates,” Composite Structures, vol. 90, no. 2, pp. 161–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. A. Sepiani, A. Rastgoo, F. Ebrahimi, and A. G. Arani, “Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia,” Materials and Design, vol. 31, no. 3, pp. 1063–1069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Naderi and A. R. Saidi, “On pre-buckling configuration of functionally graded Mindlin rectangular plates,” Mechanics Research Communications, vol. 37, no. 6, pp. 535–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Saha and P. R. Maiti, “Buckling of simply supported FGM plates under uniaxial load,” International Journal of Civil and Structural Engineering, vol. 2, no. 4, pp. 1036–1050, 2012. View at Google Scholar
  17. R. Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates based on higher order theory,” Journal of Thermal Stresses, vol. 25, no. 7, pp. 603–625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Najafizadeh and H. R. Heydari, “Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory,” European Journal of Mechanics A, vol. 23, no. 6, pp. 1085–1100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bodaghi and A. R. Saidi, “Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory,” Applied Mathematical Modelling, vol. 34, no. 11, pp. 3659–3673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Bagherizadeh, Y. Kiani, and M. R. Eslami, “Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation,” Composite Structures, vol. 93, no. 11, pp. 3063–3071, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Mozafari and A. Ayob, “Effect of thickness variation on the mechanical buckling load in plates made of functionally graded materials,” Procedia Technology, vol. 1, pp. 496–504, 2012. View at Publisher · View at Google Scholar
  22. L. S. Ma and T. J. Wang, “Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings,” International Journal of Solids and Structures, vol. 40, no. 13-14, pp. 3311–3330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Hosseini-Hashemi, K. Khorshidi, and M. Amabili, “Exact solution for linear buckling of rectangular Mindlin plates,” Journal of Sound and Vibration, vol. 315, no. 1-2, pp. 318–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Saidi, A. Rasouli, and S. Sahraee, “Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory,” Composite Structures, vol. 89, no. 1, pp. 110–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. O. O. Oyekoya, D. U. Mba, and A. M. El-Zafrany, “Buckling and vibration analysis of functionally graded composite structures using the finite element method,” Composite Structures, vol. 89, no. 1, pp. 134–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. M. Ghannadpour, H. R. Ovesy, and M. Nassirnia, “Buckling analysis of functionally graded plates under thermal loadings using the finite strip method,” Computers and Structures, vol. 108-109, pp. 93–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. H. T. Thai and D. H. Choi, “An efficient and simple refined theory for buckling analysis of functionally graded plates,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1008–1022, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Uymaz and M. Aydogdu, “Three dimensional mechanical buckling of FG plates with general boundary conditions,” Composite Structures, vol. 96, pp. 174–193, 2013. View at Publisher · View at Google Scholar
  29. A. Lal, K. R. Jagtap, and B. N. Singh, “Post buckling response of functionally graded materials plate subjected to mechanical and thermal loadings with random material properties,” Applied Mathematical Modelling, vol. 37, no. 5, pp. 2900–2920, 2013. View at Publisher · View at Google Scholar