Journal of Control Science and Engineering

Journal of Control Science and Engineering / 2011 / Article

Research Article | Open Access

Volume 2011 |Article ID 967571 |

Mohamed Zerrougui, Latifa Boutat-Baddas, Mohamed Darouach, "š»āˆž Observers Design for a Class of Continuous Time Nonlinear Singular Systems", Journal of Control Science and Engineering, vol. 2011, Article ID 967571, 8 pages, 2011.

š»āˆž Observers Design for a Class of Continuous Time Nonlinear Singular Systems

Academic Editor: Mohamed Zribi
Received29 Apr 2011
Revised13 Jul 2011
Accepted17 Jul 2011
Published04 Oct 2011


This paper considers the problem of š»āˆž observers design for a class of Lipschitz continuous nonlinear singular systems. The method is based on the parameterization of the solution of the generalized Sylvester equations obtained from the estimation errors. Sufficient conditions for the existence of the observers which guarantee stability and the worst case observers error energy over all bounded energy disturbances is minimized are given. The approach also unifies the full-order, the reduced-order, and the minimal-order observers design. The solutions are obtained through linear matrix inequalities (LMIs) formulation. A numerical example is given to illustrate our results.

1. Introduction

Observers design for nonlinear systems has been a very active field during the last two decades. This is due to the fact that a state estimation is generally required for the control when all states of the system are not available. The observers are also used in the monitoring and fault diagnosis. For standard nonlinear systems, there exist several approaches for the observers design including one based on coordinate transformations which lead to a linear error dynamics [1ā€“3] and one where the problem of the observers design can be treated without the need of these transformations [4]. An important class of standard nonlinear systems, the global Lipschitz, was considered by the authors in [5, 6], where the existence conditions for the observers are presented and constructive design methods were given for full-order and reduced-order cases.

On the other hand, singular systems (known as generalized, descriptor, or differential algebraic (DA) systems) describe a large class of systems. They are encountered in chemical and mineral industries; for example, the dynamic balances of mass and energy are described by differential equations, while thermodynamic equilibrium relations constitute additional algebraic constraints. The problem of the state estimation for these practical applications arises in data reconciliation, for example, [7]. Singular systems are also frequently encountered in electronic and economics [8]. In recent years a great deal of work has been devoted to the analysis and design techniques for singular systems [9ā€“11]. On the other hand, the problem of observer design for linear systems has been greatly treated for the standard and singular systems with or without unknown inputs (see [12ā€“14] and references therein). In [15], extension to observers design for Lipschitz singular systems has been presented; however, the observer considered has a singular system form. Recently a new method for the observers design is presented for a class of singular systems, where the nonlinearity is assumed to be composed of a Lipschitz one and an arbitrary one; the latter can be considered as an unknown disturbance. The approach is based on the parameterization of the generalized Sylvester equations solutions and unifies the design of full-, reduced-, and minimal-order observers the observer presented is causal and has a standard system form [16]. However, only the case where the model and the measurement are free from noises was considered.

The state estimation problem for linear singular systems in presence of noises has been the subject of several studies in the past decades. We can distinguish two approaches, the Kalman observering approach and š»āˆž approach. In the Kalman observering, the system and the measurement noises are assumed to be Gaussian with known statistics [17ā€“19]. When the noises are arbitrary signals with bounded energy, the š»āˆž observering permits to guarantee a noise attenuation level [20]. Recently, a number of papers have appeared that deal with the š»āˆž observering for singular systems; see, for example, [21ā€“23] and references therein. In all these works only full- or reduced-order observers were presented for the square singular systems.

In this paper, we consider the š»āˆž observers design problem for a class of Lipschitz nonlinear singular systems. The approach extends the work [16] to the case where the model and the measurement are affected by noises. Sufficient conditions in terms of LMIs are given for this š»āˆž problem. The method is more general than the one considered in [16] since it assumes only the impulse observability of the linear part. It also unifies the design for full-order, reduced-order, and minimal-order observers. A numerical example is given to illustrate our results.

2. Problem Formulation

Consider the following nonlinear singular system: ī€·šøĢ‡š‘„(š‘”)=š“š‘„(š‘”)+šµš‘¢(š‘”)+š·š‘“š‘”,š¹šæī€øš‘„,š‘¢+š·1š‘¤(š‘”),(1)š‘¦(š‘”)=š¶š‘„(š‘”)+š·2š‘¤(š‘”),(2) with the initial state š‘„(0)=š‘„0, where š‘„(š‘”)āˆˆā„š‘› is the semi state vector, š‘¢(š‘”)āˆˆā„š‘š is the known input, š‘¤(š‘”)āˆˆā„š‘›š‘¤ is the disturbance vector containing both system and measurement noises, and š‘¦(š‘”)āˆˆā„š‘ is the measurement output. Matrix šøāˆˆā„š‘›1Ɨš‘›, and, when š‘›1=š‘›, matrix šø is singular. Matrices š“āˆˆā„š‘›1Ɨš‘›, šµāˆˆā„š‘›1Ɨš‘š, š¶āˆˆā„š‘Ć—š‘›, š·āˆˆā„š‘›1Ɨš‘›š‘“, š·1āˆˆā„š‘›1Ɨš‘›š‘¤ and š·2āˆˆā„š‘Ć—š‘›š‘¤. The nonlinearity š‘“(š‘”,š¹šæš‘„,š‘¢) verifies the Lipschitz constraints: ā€–ā€–š‘“ī€·š‘”,š¹šæš‘„1ī€øī€·,š‘¢āˆ’š‘“š‘”,š¹šæš‘„2ī€øā€–ā€–ī€·ā€–ā€–š¹,š‘¢ā‰¤šœ†šæī€·š‘„1āˆ’š‘„2ī€øā€–ā€–ī€ø,(3) where šœ† is a known Lipschitz constant and matrix š¹šæ is real with appropriate dimension.

Let š‘Ÿ be the rank of the matrix šø, and let Ī¦āˆˆā„š‘Ÿ1Ɨš‘›1 be a full row rank matrix such that Ī¦šø=0, with š‘Ÿ1=š‘›1āˆ’š‘Ÿ. Then, from (1), we obtain Ī¦š“š‘„(š‘”)+Ī¦š·1š‘¤ī€·(š‘”)+Ī¦š·š‘“š‘”,š¹šæī€øš‘„,š‘¢=āˆ’Ī¦šµš‘¢(š‘”).(4) In the sequel we assume the following.

Assumption 1. Consider ī‚ƒrankšøš¶Ī¦š“ī‚„=š‘›.

Before presenting our main results, we can make the following remarks.

Remark 2. When š‘›1=š‘›, Assumption 1 is exactly the impulse observability of the linear singular system (šø,š“,šµ,š¶).

Remark 3. Condition Ī¦šø=0 is more general than condition Ī¦[šøš·]=0 considered in [16]. In fact when the matrix [šøš·] is of full row rank, matrix Ī¦=0 and Assumption 1 becomes ī€ŗrankšøš¶ī€»=š‘› which is more restrictive than the impulse observability condition.

Now, let us consider the following reduced-order observer for system (1): Ģ‡šœī€·(š‘”)=š‘šœ(š‘”)+š½š‘¦(š‘”)+š»š‘¢(š‘”)+š‘‡š·š‘“š‘”,š¹šæī€ø,ī€·Ģ‚š‘„,š‘¢Ģ‚š‘„(š‘”)=š‘ƒšœ(š‘”)āˆ’š‘„Ī¦šµš‘¢(š‘”)+š¹š‘¦(š‘”)āˆ’š‘„Ī¦š·š‘“š‘”,š¹šæī€ø,Ģ‚š‘„,š‘¢(5) with the initial condition šœ(0)=šœ0. Vector šœ(š‘”)āˆˆā„š‘ž represents the state vector of the observer, and Ģ‚š‘„(š‘”)āˆˆā„š‘› is the estimate of š‘„(š‘”). Matrices š‘, š½, š‘‡, š», š‘ƒ, š‘„, and š¹ are unknown matrices of appropriate dimensions, which must be determined such that,(1)for š‘¤(š‘”)=0, the error š‘’(š‘”)=Ģ‚š‘„(š‘”)āˆ’š‘„(š‘”) asymptotically converges to 0,(2)for š‘¤(š‘”)ā‰ 0, we solve the minsupšœ”āˆˆšæ2āˆ’{0}(ā€–š‘’ā€–šæ2/ā€–šœ”ā€–šæ2).

Let the error between šœ(š‘”) and š‘‡šøš‘„(š‘”) be šœ€(š‘”)=šœ(š‘”)āˆ’š‘‡šøš‘„(š‘”),(6) then we obtain the following dynamics of šœ€(š‘”):Ģ‡ī€·Ģ‡šœ€(š‘”)=šœ(š‘”)āˆ’š‘‡šøĢ‡š‘„(š‘”)=š‘šœ€+(š‘š‘‡šøāˆ’š‘‡š“+š½š¶)š‘„(š‘”)+(š»āˆ’š‘‡šµ)š‘¢(š‘”)+š‘‡š·Ī”š‘“+š½š·2āˆ’š‘‡š·1ī€øī‚ƒī‚„āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦ī€·š‘¤(š‘”),Ģ‚š‘„(š‘”)=š‘ƒšœ€(š‘”)+š‘ƒš‘„š¹š‘‡šøĪ¦š“š‘„(š‘”)āˆ’š‘„Ī¦š·Ī”š‘“+š‘„Ī¦š·1+š¹š·2ī€øš‘¤(š‘”),(7) where Ī”š‘“=š‘“(š‘”,š¹šæĢ‚š‘„(š‘”),š‘¢)āˆ’š‘“(š‘”,š¹šæš‘„(š‘”),š‘¢).

Under Assumption 1, if there exists a matrix š‘‡ such that ,š‘š‘‡šøāˆ’š‘‡š“+š½š¶=0(8)ī‚ƒī‚„āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š»=š‘‡šµ,š‘ƒš‘„š¹š‘‡šøĪ¦š“=š¼,(9) then (7) becomes Ģ‡šœ€(š‘”)=š‘šœ€(š‘”)+š‘‡š·Ī”š‘“+šœ‘1š‘¤(š‘”),(10)š‘’(š‘”)=š‘ƒšœ€(š‘”)āˆ’š‘„Ī¦š·Ī”š‘“+šœ‘2š‘¤(š‘”),(11) where šœ‘1=š½š·2āˆ’š‘‡š·1 and šœ‘2=š‘„Ī¦š·1+š¹š·2.

Now the problem of the š»āˆž observer design is reduced to find the matrices š‘,š½,š»,š‘ƒ,š‘„,š¹, and š‘‡ such that (8) is satisfied and the worst case observers error energy over all bounded energy disturbances š‘¤(š‘”) is minimized.

Remark 4. The observer given in (5) is more general than that presented in [16]; this can be seen from the fact that, for Ī¦š·=0, and š‘¤(š‘”)=0, we obtain the observer given in [16]. As in [16] this observer is general, and its design unifies the full-order (š‘ž=š‘›), the reduced-order (š‘ž=š‘›āˆ’š‘), and the minimal-order observers design.

3. Main Results

In this section we will present the š»āˆž observers design. The š»āˆž observer design problem can be formulated as follows: given the nonlinear singular system (1)-(2) and a prescribed level of noise š›¾>0, find a suitable observer of the form (5), such that,(1)for š‘¤(š‘”)=0, estimation error (11) converges asymptotically to 0, that is, š‘’(š‘”)ā†’0 as š‘”ā†’āˆž,(2)under the zero initial condition, the error š‘’(š‘”) satisfies ā€–š‘’(š‘”)ā€–šæ2<š›¾ā€–š‘¤(š‘”)ā€–šæ2 for any š‘¤(š‘”)āˆˆšæ2āˆ’{0}, where š›¾>0 is the prescribed constant.

Now, the dynamics error (10)-(11) can be written in a singular form as š”¼Ģ‡šœ‰(š‘”)=š”øšœ‰(š‘”)+š”¹Ī”š‘“+š”»š‘¤(š‘”),(12) where [šœ‰(š‘”)=šœ–š‘’], ī€ŗš”¼=š¼000ī€», ī€ŗš”ø=š‘0š‘ƒāˆ’š¼ī€», ī€ŗš”¹=š‘‡š·āˆ’š‘„Ī¦š·ī€», and ī€ŗš·=šœ‘1šœ‘2ī€». Then, the error š‘’(š‘”)ā†’0 as š‘”ā†’āˆž, for š‘¤(š‘”)=0 if system (12) is asymptotically stable.

3.1. Stability Analysis

Before giving the š»āˆž observers design method for system (1)-(2), let us deal with the stability analysis problem and derive a sufficient condition, in a strict LMI form, for system (12) to be asymptotically stable for š‘¤(š‘”)=0. The following lemma gives this condition.

Lemma 5. For š‘¤(š‘”)=0, system (12) is asymptotically stable, if there exists a matrix š‘Œ, such that the following LMIs are satisfied: š”¼š‘‡š‘Œ=š‘Œš‘‡,š”¼ā©¾0(13)āŽ”āŽ¢āŽ¢āŽ£š”øš‘‡š‘Œ+š‘Œš‘‡š”ø+šœ‡šœŒš‘Œš‘‡š”¹š”¹š‘‡āŽ¤āŽ„āŽ„āŽ¦š‘Œāˆ’šœ‡š¼<0(14) with ī‚ƒšœŒ=000šœ†21š¹š‘‡šæš¹šæī‚„.

Proof. For stability analysis we construct the following Lyapunov candidate function: š‘‰(š‘”)=šœ‰š‘‡(š‘”)š”¼š‘‡š‘Œšœ‰(š‘”)=šœ‰š‘‡(š‘”)š‘Œš‘‡š”¼šœ‰(š‘”)(15) with š”¼š‘‡š‘Œ=š‘Œš‘‡š”¼ā©¾0. The derivative of š‘‰(š‘”) along the solution of (12), for š‘¤(š‘”)=0, is given by Ģ‡š‘‰Ģ‡šœ‰(š‘”)=š‘‡(š‘”)š”¼š‘‡š‘Œšœ‰(š‘”)+šœ‰š‘‡(š‘”)š‘Œš‘‡š”¼Ģ‡šœ‰(š‘”)=(š”øšœ‰(š‘”)+š”¹Ī”š‘“)š‘‡š‘Œšœ‰(š‘”)+šœ‰š‘‡(š‘”)š‘Œš‘‡(š”øšœ‰(š‘”)+š”¹Ī”š‘“)=šœ‰š‘‡ī€·š”ø(š‘”)š‘‡š‘Œ+š‘Œš‘‡š”øī€øšœ‰(š‘”)+Ī”š‘“š‘‡š”¹š‘‡š‘Œšœ‰(š‘”)+šœ‰š‘‡(š‘”)š‘Œš‘‡š”¹Ī”š‘“.(16) Let š‘¢ and š‘£ be two vectors of appropriate dimensions, then for all scalar šœ‡>0 the following inequality holds: š‘¢š‘‡š‘£+š‘£š‘‡š‘¢ā©½šœ‡š‘¢š‘‡1š‘¢+šœ‡š‘£š‘‡š‘£.(17) By using (17), it is not difficult to check that Ī”š‘“š‘‡(š”¹)š‘‡š‘Œšœ€(š‘”)+šœ€š‘‡(š‘”)š‘Œš‘‡(ā©½1š”¹)Ī”š‘“šœ‡šœ€š‘‡(š‘”)š‘Œš‘‡š”¹š”¹š‘‡š‘Œšœ€(š‘”)+šœ‡Ī”ā„±š‘‡Ī”š‘“.(18) In this case we have Ģ‡š‘‰(š‘”)ā©½šœ‰š‘‡(š‘”)(š”øš‘‡š‘Œ+š‘Œš‘‡š”ø)šœ‰(š‘”)+šœ‡Ī”š‘“š‘‡Ī”š‘“+(1/šœ‡)šœ‰š‘‡(š‘”)š‘Œš‘‡š”¹š”¹š‘‡š‘Œšœ‰(š‘”). On the other hand, by using the Lipschitz conditions and the fact that [š‘’(š‘”)=0š¼]šœ‰(š‘”), we have šœ‡Ī”š‘“š‘‡Ī”š‘“ā©½šœ‡šœ‰š‘‡(š‘”)šœŒšœ‰(š‘”), where ī‚ƒšœŒ=000šœ†21š¹š‘‡šæš¹šæī‚„. Then we obtain the following inequality: Ģ‡š‘‰(š‘”)ā©½šœ‰š‘‡ī€·š”ø(š‘”)š‘‡š‘Œ+š‘Œš‘‡š”øī€øšœ‰(š‘”)+šœ‰š‘‡+1(š‘”)šœ‡šœŒšœ‰(š‘”)šœ‡šœ‰š‘‡(š‘”)š‘Œš‘‡š”¹š”¹š‘‡š‘Œšœ‰(š‘”)=šœ‰š‘‡(ī‚µš”øš‘”)š‘‡š‘Œ+š‘Œš‘‡1š”ø+šœ‡š‘Œš‘‡š”¹š‘‡ī‚¶š”¹š‘Œ+šœ‡šœŒšœ‰(š‘”)(19) and Ģ‡š‘‰(š‘”)<0, if š”øš‘‡š‘Œ+š‘Œš‘‡š”ø+(1/šœ‡)š‘Œš‘‡š”¹š”¹š‘‡š‘Œ+šœ‡šœŒ<0.
Using the Schur complement we obtain (14), then Lemma 5 is proved.

From this lemma, one can see that the stability conditions (13) and (14) are nonstrict LMIs, which contain equality constraints; this may result in numerical problems when checking such conditions. Therefore, strict LMIs conditions are more desirable than nonstrict ones from the numerical point of view. The following lemma presents the stability conditions in a strict LMI formulation.

Lemma 6. For š‘¤(š‘”)=0, system (12) is asymptotically stable if there exist a positive definite matrix š‘‹1 and matrices š‘‹2,š‘„1, and š‘„2 and a scalar šœ‡ such that the following LMI is satisfied:āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š‘š‘‡š‘‹1+š‘‹š‘‡1š‘+š‘‹2š‘ƒ+š‘ƒš‘‡š‘‹š‘‡2+š‘ƒš‘‡š‘„1+š‘„š‘‡1š‘ƒāˆ’š‘‹2āˆ’š‘„š‘‡1+š‘ƒš‘‡š‘„2š‘‹š‘‡1š‘‡š·āˆ’š‘„š‘‡1š‘„Ī¦š·āˆ’š‘‹2š‘„Ī¦š·āˆ—āˆ’š‘„2āˆ’š‘„š‘‡2+šœ‡šœ†2š¹š‘‡šæš¹šæāˆ’š‘„š‘‡2āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š‘„Ī¦š·āˆ—āˆ—āˆ’šœ‡š¼<0.(20)

Proof. Let š‘Œ=š‘‹š”¼+š”¼āŸ‚š‘‡š‘„, where š”¼āŸ‚ is the orthogonal matrix of š”¼ satisfying š”¼āŸ‚š”¼=0 and š”¼āŸ‚š”¼āŸ‚š‘‡>0, and ī‚ƒš‘‹=š‘‹1š‘‹2š‘‹š‘‡2š‘‹3ī‚„, and [š‘„=š‘„1š‘„2]. It is easy to see that š”¼š‘‡š‘Œ=š‘Œš‘‡šøā©¾0, since š‘‹1>0. In this case (13)-(14) reduce toāŽ”āŽ¢āŽ¢āŽ£š”øš‘‡š‘‹š”¼+š”øš‘‡š”¼āŸ‚š‘‡š‘„+š”¼š‘‡š‘‹š‘‡š”ø+š‘„š‘‡š”¼āŸ‚š”øš”¼š‘‡š‘‹š‘‡š”¹+š‘„š‘‡š”¼āŸ‚š”¹š”¹š‘‡š‘‹š”¼+š”¹š‘‡š”¼āŸ‚š‘‡āŽ¤āŽ„āŽ„āŽ¦š‘„āˆ’šœ‡š¼<0.(21)On the other hand by inserting the values of š”¼,š”ø,š”¹, and šœŒ into (21) we obtain (20).

Remark 7. For Ī¦š·=0, inequality (20) becomesāŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š‘š‘‡š‘‹1+š‘‹š‘‡1š‘+š‘‹2š‘ƒ+š‘ƒš‘‡š‘‹š‘‡2+š‘ƒš‘‡š‘„1+š‘„š‘‡1š‘ƒāˆ’š‘‹2āˆ’š‘„š‘‡1+š‘ƒš‘‡š‘„2š‘‹š‘‡1š‘‡š·āˆ’š‘‹š‘‡2āˆ’š‘„1+š‘„š‘‡2š‘ƒāˆ’š‘„2āˆ’š‘„š‘‡2+šœ‡šœ†21š¹š‘‡šæš¹šæ0(š‘‡š·)š‘‡š‘‹1āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦0āˆ’šœ‡š¼<0.(22)
By premultiplying (22) by ī€ŗš¼š‘ƒš‘‡000š¼ī€» and postmultiplying it by ī‚ƒš¼0š‘ƒ00š¼ī‚„, we obtain ī‚ƒš‘š‘‡š‘‹1+š‘‹š‘‡1š‘+šœ‡šœ†1š¹š‘‡šæš¹šæš‘‹š‘‡1š‘‡š·(š‘‡š·)š‘‡š‘‹1āˆ’šœ‡š¼ī‚„<0, which is exactly the inequality (15) of [16].

3.2. š»āˆž Observes Design

In this section we shall present the š»āˆž observer design. The following lemma gives the sufficient conditions for system (12) to be stable for š‘¤(š‘”)=0 and ā€–š‘’(š‘”)ā€–šæ2<š›¾ā€–š‘¤(š‘”)ā€–šæ2 for š‘¤(š‘”)ā‰ 0.

Lemma 8. The error š‘’(š‘”) given by (11) is asymptotically stable for š‘¤(š‘”)=0 and ā€–š‘’(š‘”)ā€–šæ2<š›¾ā€–š‘¤(š‘”)ā€–šæ2 for š‘¤(š‘”)ā‰ 0, if there exist a positive definite matrix š‘‹1 and matrices š‘‹2,š‘„1,š‘„2 and scalars šœ‡ and š›¾ such that the following LMI is satisfied:āŽ”āŽ¢āŽ¢āŽ¢āŽ£š‘š‘‡š‘‹1+š‘‹š‘‡1š‘+š‘‹2š‘ƒ+š‘ƒš‘‡š‘‹š‘‡2+š‘ƒš‘‡š‘„1+š‘„š‘‡1š‘ƒāˆ’š‘‹2āˆ’š‘„š‘‡1+š‘ƒš‘‡š‘„2ī€·š‘‹š‘‡1š‘‡š·āˆ’š‘„š‘‡1š‘„Ī¦š·āˆ’š‘‹2š‘‹š‘„Ī¦š·ī€øī€·š‘‡1šœ‘1+š‘‹2šœ‘2+š‘„š‘‡1šœ‘2ī€øāˆ—āˆ’š‘„2āˆ’š‘„š‘‡2+š¼+šœ‡šœ†2š¹š‘‡šæš¹šæāˆ’š‘„š‘‡2š‘„Ī¦š·š‘„š‘‡2šœ‘2āˆ—āˆ—āˆ’šœ‡š¼0āˆ—āˆ—āˆ—āˆ’š›¾2š¼āŽ¤āŽ„āŽ„āŽ„āŽ¦<0.(23)

Proof. Consider the following Lyapunov candidate function š‘‰(š‘”)=šœ‰š‘”š”¼š‘‡š‘Œšœ‰=šœ‰š‘‡(š‘”)š‘Œš‘‡š”¼šœ‰(š‘”), with š”¼š‘‡š‘Œ=š‘Œš‘‡š”¼. Then we haveĢ‡š‘‰Ģ‡šœ‰(š‘”)=š‘‡(š‘”)š”¼š‘‡š‘Œšœ‰(š‘”)+šœ‰š‘‡(š‘”)š‘Œš‘‡š”¼Ģ‡šœ‰(š‘”)=(š”øšœ‰(š‘”)+š”¹Ī”š‘“+š”»š‘¤(š‘”))š‘‡š‘Œšœ‰(š‘”)+šœ‰(š‘”)š‘‡š‘Œš‘‡(š”øšœ‰(š‘”)+š”¹Ī”š‘“+š”»š‘¤(š‘”))=šœ‰š‘‡ī€·š”ø(š‘”)š‘‡šœ‰+š‘Œš‘‡š”øī€øšœ‰(š‘”)+Ī”š‘“š‘‡š”¹š‘‡š‘Œšœ‰(š‘”)+šœ‰(š‘”)š‘‡š‘Œš‘‡š”¹Ī”š‘“+š‘¤š‘‡(š‘”)š”»š‘‡š‘Œšœ‰(š‘”)+šœ‰(š‘”)š‘‡š‘Œš‘‡š”»š‘¤(š‘”).(24)
From (17) we have the following inequality: Ī”š‘“š‘‡(š”¹)š‘‡š‘Œšœ€(š‘”)+šœ€š‘‡(š‘”)š‘Œš‘‡(ā©½1š”¹)Ī”š‘“šœ‡šœ€š‘‡(š‘”)š‘Œš‘‡š”¹š”¹š‘‡š‘Œšœ€(š‘”)+šœ‡Ī”š‘“š‘‡Ī”š‘“.(25) Then Ģ‡š‘‰(š‘”) becomes Ģ‡š‘‰(š‘”)ā©½šœ‰š‘‡ī€·š”ø(š‘”)š‘‡š‘Œ+š‘Œš‘‡š”øī€øšœ‰(š‘”)+šœ‡Ī”š‘“š‘‡1Ī”š‘“+šœ‡šœ‰š‘‡(š‘”)š‘Œš‘‡š”¹š”¹š‘‡š‘Œšœ‰(š‘”)+š‘¤š‘‡(š‘”)š”»š‘‡š‘Œšœ‰(š‘”)+šœ‰š‘‡(š‘”)š‘Œš‘‡š”»š‘¤(š‘”).(26)
On the other hand, we have Ī”š‘“š‘‡Ī”š‘“ā©½šœ†2š‘’š‘‡(š‘”)š¹š‘‡šæš¹šæš‘’(š‘”), and we know that [š‘’(š‘”)=0š¼]šœ‰(š‘”) then Ī”š‘“š‘‡Ī”š‘“ā©½šœ‰š‘‡(š‘”)šœŒšœ‰(š‘”), where ī‚ƒšœŒ=000šœ†2š¹š‘‡šæš¹šæī‚„.Then Ģ‡š‘‰(š‘”)ā©½šœ‰š‘‡ī€·š”ø(š‘”)š‘‡š‘Œ+š‘Œš‘‡š”øī€øšœ‰(š‘”)+šœ‡šœ†2šœ‰š‘‡1(š‘”)šœŒšœ‰(š‘”)+šœ‡šœ‰š‘‡š‘£š‘Œš‘‡š”¹š”¹š‘‡š‘Œšœ‰(š‘”)+š‘¤š‘‡š”»š‘‡š‘Œšœ‰(š‘”)+šœ‰š‘‡(š‘”)š‘Œš‘‡š”»š‘¤(š‘”).(27) Let ī€ŗšœ‚(š‘”)=šœ€(š‘”)š‘¤(š‘”)ī€», then from (27) and (12) we obtain the following inequality: Ģ‡š‘‰+š‘’š‘‡(š‘”)š‘’(š‘”)āˆ’š›¾2š‘¤š‘‡(š‘”)š‘¤(š‘”)ā©½šœ‚š‘‡(š‘”)Ī£šœ‚(š‘”)(28) with āŽ”āŽ¢āŽ¢āŽ¢āŽ£š”øĪ£=š‘‡š‘Œ+š‘Œš‘‡1š”ø+šœ‡š‘Œš‘‡š”¹š”¹š‘‡š‘Œ+šœŒš‘Œš‘‡š”»š”»š‘‡š‘Œāˆ’š›¾2š¼āŽ¤āŽ„āŽ„āŽ„āŽ¦,(29) where ī‚ƒšœŒ=000š¼+šœ‡šœ†2š¹š‘‡šæš¹šæī‚„.
If Ī£<0, we obtain Ģ‡š‘‰<š›¾2š‘¤š‘‡(š‘”)š‘¤āˆ’š‘’š‘‡(š‘”)š‘’(š‘”).(30) Integrating the two sides of this inequality gives ī€œāˆž0Ģ‡ī€œš‘‰(šœ)š‘‘šœ<āˆž0š›¾2š‘¤š‘‡ī€œ(šœ)š‘¤(šœ)š‘‘šœāˆ’āˆž0š‘’š‘‡(šœ)š‘’(šœ)š‘‘šœ(31) or equivalently š‘‰(āˆž)āˆ’š‘‰(0)<š›¾2ā€–ā€–š‘¤(š‘”)22ā€–āˆ’ā€–š‘’(š‘”)22,(32) under zero initial conditions, we obtain š‘‰(āˆž)<š›¾2ā€–ā€–š‘¤(š‘”)22ā€–āˆ’ā€–š‘’(š‘”)22(33) which leads to ā€–ā€–š‘’(š‘”)22<š›¾2ā€–ā€–š‘¤(š‘”)22.(34) Using Schur complement we obtain āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š”øĪ£=š‘‡š‘Œ+š‘Œš‘‡š”ø+šœŒš‘Œš‘‡š”¹š‘Œš‘‡š”»š”¹š‘‡š”»š‘Œāˆ’šœ‡š¼0š‘‡š‘Œ0āˆ’š›¾2š¼āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦<0.(35) Let š‘Œ=š‘‹šø+š”¼āŸ‚š‘‡š‘„ with ī‚ƒš‘„š‘„=1š‘„2ī‚„āŽ”āŽ¢āŽ¢āŽ£š‘‹,š‘‹=1š‘‹2š‘‹š‘‡2š‘‹3āŽ¤āŽ„āŽ„āŽ¦,(36) we obtain š”¼š‘‡š‘Œ=š‘Œš‘‡šøā©¾0.(37) And by substituting š”¼,š”ø,š”¹ and š”» by their values we obtain (23), which proves the lemma.

Remark 9. The results of Lemmas 6 and 8 are independent of the choice of matrix š”¼āŸ‚; this can be seen from the fact that the general form of š”¼āŸ‚ is š”¼āŸ‚=[0š‘€], where š‘€ is an arbitrary nonsingular matrix; in this case we have š”¼āŸ‚š‘‡ī€ŗš‘„=0š¼ī€»[š‘„1š‘„2], where š‘„1=š‘€š‘„1 and š‘„2=š‘€, which shows that it suffices to choose š”¼āŸ‚=[0š¼].
Before giving the design method for the observer (5), let us consider (8) and let ī‚š‘‡=š‘‡+ĪØĪ¦, where ĪØ is an arbitrary matrix of appropriate dimension; they can be written as ī‚ƒī‚„āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£ī‚š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦=ī‚š‘ĪØš½š‘‡šøĪ¦š“š‘‡š“,(38)ī‚ƒī‚„āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£ī‚š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š‘ƒš‘„š¹š‘‡šøĪ¦š“=š¼š‘›.(39) Equations (38) and (39) have a solution if and only if āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ£ī‚š¶ī‚š¼rankš‘‡šøĪ¦š“š‘‡š“š‘›āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£ī‚š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦=rankš‘‡šøĪ¦š“=š‘›.(40) Now, from Assumption 1 and (40), we have āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£ī‚š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦=āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£šøš¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦rankš‘‡šøĪ¦š“Ī¦š“=š‘›.(41) Let š‘… be any full row rank matrix such that āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š‘…š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£šøš¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£ī‚š¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦rankĪ¦š“=rankĪ¦š“=rankš‘‡šøĪ¦š“=š‘›,(42) then there always exist matrices parameter š¾ and ī‚š‘‡ such that ī‚āŽ”āŽ¢āŽ¢āŽ£š¶āŽ¤āŽ„āŽ„āŽ¦š‘‡šø=š‘…āˆ’š¾Ī¦š“(43) or equivalently ī‚ƒī‚ī‚„āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£šøš¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š‘‡š¾Ī¦š“=š‘….(44) Then, under Assumption 1, there exists a solution to (43) given by ī‚ƒī‚ī‚„āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£šøš¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š‘‡š¾=š‘…Ī¦š“ā€ .(45) In this case matrices ī‚š‘‡ and š¾ are given by ī‚āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£šøš¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š‘‡=š‘…Ī¦š“ā€ āŽ”āŽ¢āŽ¢āŽ£š¼0āŽ¤āŽ„āŽ„āŽ¦,āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£šøš¶āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š¾=š‘…Ī¦š“ā€ āŽ”āŽ¢āŽ¢āŽ£0š¼āŽ¤āŽ„āŽ„āŽ¦.(46) Also, under Assumption 1, the general solution to (38) is given by ī‚ƒī‚„=ī‚š‘ĪØš½š‘‡š“Ī©ā€ āˆ’š‘1ī€·š¼āˆ’Ī©Ī©ā€ ī€ø,(47) here ī‚øī‚š‘‡Ī©=šøš¶Ī¦š“ī‚¹ and š‘1 is an arbitrary matrix of appropriate dimension.
And also under Assumption 1 one solution to (39) is given by ī‚ƒī‚„š‘ƒš‘„š¹=š¼š‘›Ī©ā€ .(48) Now, define the following matrices: Ī›š‘ƒ=Ī©ā€ āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š¼00āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,Ī›š‘„=Ī©ā€ āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£0š¼0āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,Ī›š‘=ī‚āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š¼00āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦š‘‡š“,Ī›ĪØ=ī‚š‘‡š“Ī›š‘„,Ī›š½=ī‚š‘‡š“Ī›š¹,Ī”š‘=ī€·š¼āˆ’Ī©Ī©ā€ ī€øāŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£š¼00āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,Ī”ĪØ=ī€·š¼āˆ’Ī©Ī©ā€ ī€øāŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£0š¼0āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,Ī”š½=ī€·š¼āˆ’Ī©Ī©ā€ ī€øāŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£00š¼āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,Ī›š¹=Ī©ā€ āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£00š¼āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,(49) then we obtain š‘=Ī›š‘āˆ’š‘1Ī”š‘,ĪØ=Ī›ĪØāˆ’š‘1Ī”ĪØ,š½=Ī›š½āˆ’š‘1Ī”š½,š‘ƒ=Ī›š‘ƒ,š‘„=Ī›š‘„,š¹=Ī›š¹,šœ‘1=Ī›šœ‘1āˆ’š‘1Ī”šœ‘1,šœ‘2=Ī›šœ‘2,š‘‡š·=Ī›š‘‡š·āˆ’š‘1Ī”š‘‡š·,(50) where Ī›šœ‘1=ī‚€Ī›š½š·2āˆ’ī‚š‘‡š·1+Ī›ĪØĪ¦š·1ī‚,Ī”šœ‘1=ī€·Ī”š½š·2+Ī”ĪØĪ¦š·1ī€ø,Ī”š‘‡š·=āˆ’Ī”ĪØĪ›Ī¦š·,šœ‘2=ī€·Ī›š‘„Ī¦š·1+Ī›š¹š·2ī€ø,Ī›š‘‡š·=ī‚š‘‡š·āˆ’Ī›ĪØĪ¦š·.(51)
Now, the š»āˆž observer design can be obtained from the following theorem.

Theorem 10. There exists an observer of the form (5) such that the error š‘’(š‘”) given by (10)-(11) is asymptotically stable for š‘¤(š‘”)=0 and ā€–š‘’(š‘”)ā€–šæ2<š›¾ā€–š‘¤(š‘”)ā€–šæ2 for š‘¤(š‘”)ā‰ 0 if there exist a symmetric positive definite matrix š‘‹1 and matrices š‘‹2,Ī©š‘‹1 and scalars šœ‡ and š›¾ such that the following LMIs are satisfied: āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ£((1,1)(1,2)(1,3)(1,4)1,2)š‘‡(2,2)(2,3)(2,4)(1,3)š‘‡(2,3)š‘‡āˆ’šœ‡š¼0(1,4)š‘‡(2,4)š‘‡0āˆ’š›¾2š¼āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ¦<0,(52) where (1,1)=Ī›š‘‡š‘š‘‹1āˆ’Ī”š‘‡š‘Ī©š‘‹1+š‘‹1Ī›š‘āˆ’Ī©š‘‡š‘‹1Ī”š‘+š‘‹2Ī›š‘ƒ+Ī›š‘‡š‘ƒš‘‹š‘‡2+Ī›š‘‡š‘ƒš‘„1+š‘„š‘‡1Ī›š‘ƒ,(1,2)=āˆ’š‘‹2āˆ’š‘„š‘‡1+Ī›š‘‡š‘ƒš‘„2,(1,3)=š‘‹1Ī›š‘‡š·āˆ’Ī©š‘‡š‘‹1Ī”š‘‡š·āˆ’š‘„š‘‡1Ī›š‘„Ī¦š·āˆ’š‘‹2Ī›š‘„Ī¦š·,(1,4)=š‘‹1Ī›šœ‘1āˆ’Ī©š‘‡š‘‹1Ī”šœ‘1+š‘„š‘‡1Ī›šœ‘1+š‘‹2Ī›šœ‘2,(2,2)=āˆ’š‘„2āˆ’š‘„š‘‡2+š¼+šœ‡šœ†2š¹š‘‡šæš¹šæ,(2,3)=āˆ’š‘„š‘‡2Ī›š‘„Ī¦š·,(2,4)=š‘„š‘‡2Ī›šœ‘2.(53)

Proof. Let Ī©š‘‹1=š‘š‘‡1š‘‹1, and by substituting š‘,š‘ƒ,š‘„,šœ‘1, and šœ‘2 by their values in (23) we obtain (52).

Procedure for the Observers Design
(1) Under Assumption 1, compute matrices Ī›š‘, Ī”š‘, Ī›š½, Ī”š½, Ī›š‘ƒ, Ī›š‘„,Ī›š¹, Ī›ĪØ, Ī”ĪØ. Ī›šœ‘1, Ī”šœ‘1, Ī›šœ‘2, Ī›š‘‡š·, Ī”š‘‡š·.(2) Solve the LMI (52) to obtain the matrix parameter š‘1.(3) Compute the observers parameters š‘,š½,š‘‡,š»,š‘ƒ,š‘„, and š¹.

4. Numerical Example

Let us consider the following continuous nonlinear singular system of the form (1) with āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£111āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,š·šø=010001000,š“=100010101,šµ=1=āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£111āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦ī‚ƒī‚„,111āˆ’111,š·=,š¶=100(54)š·2=[11] and š‘¢(š‘”)=sin(2š‘”). The nonlinearity š‘“(š‘„,š‘¢,š‘”)=sin(š‘„2(š‘”)). For this system, the matrix [Ī¦=001]. In this case it is easy to see that Assumption 1 is verified. We will design a reduced-order observer of dimension š‘ž=2; let ī€ŗš‘…=010001ī€», then ī‚ƒrankš‘…š¶Ī¦š“ī‚„=3. For š›¾2=9.762, from Section 3 we obtain the following results: Ī©š‘‹1=102āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ¦āˆ’4.1830.5āˆ’0.331āˆ’0.11āˆ’0.5670.276āˆ’0.0450.627,š‘‹1=āŽ”āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ¦.3.919āˆ’2.628āˆ’2.6285.139(55) The š»āˆž observer is given by the following model:Ģ‡āŽ”āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ¦+āŽ”āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ¦ī€·šœ(š‘”)=0āˆ’1.9960.666āˆ’2.121šœ(š‘”)+āˆ’0.331āˆ’1.414š‘¦(š‘”)āˆ’0.331āˆ’0.747š‘¢(š‘”)+āˆ’0.331āˆ’0.747sinĢ‚š‘„2(ī€ø,āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£0āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦+āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£0āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£0āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦ī€·š‘”)Ģ‚š‘„(š‘”)=0āˆ’0.3521000.705šœ(š‘”)āˆ’0.2350.529š‘¢(š‘”)0.764āˆ’0.529š‘¦(š‘”)āˆ’0.2350.529sinĢ‚š‘„2ī€ø.(š‘”)(56)

Simulation results are presented in Figures 1ā€“3. Figure 1 presents the noises š‘¤1(š‘”) and š‘¤2(š‘”). Figures 2 and 3 show the estimation of the states š‘„1, š‘„2, and š‘„3. It can be seen that the observer performs as expected.

5. Conclusion

In this paper a new method for the š»āˆž observers design for a class of Lipschitz nonlinear singular systems has been developed. The obtained results unify the observers design of full, reduced, and minimal orders. Sufficient conditions for the existence of these observers are given in terms of LMIs. The advantage of these LMIs conditions is that they can be performed by using convex optimization techniques available in Matlab LMI toolbox, for example. A numerical example has been presented to show the applicability of our approach. The extension of our work to more general nonlinear singular systems is under study.


  1. J. Krener and W. Respondek, ā€œNonlinear observer design with linearizable error dynamics,ā€ SIAM Journal on Control and Optimization, vol. 23, no. 2, pp. 197ā€“216, 1985. View at: Google Scholar
  2. H. Keller, ā€œNonlinear observer design by transformation into generalized observer canonical form,ā€ International Journal of Control, vol. 46, no. 6, pp. 1915ā€“1930, 1987. View at: Google Scholar
  3. X. H. Xia and W. Gao, ā€œNonlinear observer design by observer error linearization,ā€ SIAM Journal on Control and Optimization, vol. 27, no. 1, pp. 199ā€“216, 1989. View at: Google Scholar
  4. M. Arcak and P. Kokotovi, ā€œNonlinear observers: a circle criterion design and robustness analysis,ā€ Automatica, vol. 37, no. 12, pp. 1923ā€“1930, 2001. View at: Publisher Site | Google Scholar
  5. R. Rajamani, ā€œObservers for Lipschitz nonlinear systems,ā€ IEEE Transactions on Automatic Control, vol. 43, no. 3, pp. 397ā€“401, 1998. View at: Google Scholar
  6. F. Zhu and Z. Han, ā€œA note on observers for Lipschitz nonlinear systems,ā€ IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1751ā€“1754, 2002. View at: Publisher Site | Google Scholar
  7. M. Darouach and M. Zasadzinski, ā€œData reconciliation in generalized linear dynamic systems,ā€ AICHE Journal, vol. 37, no. 2, pp. 193ā€“201, 1991. View at: Google Scholar
  8. D. J. Luenberger, ā€œNon-linear descriptor systems,ā€ Journal of Economic Dynamics and Control, vol. 1, no. 3, pp. 219ā€“242, 1979. View at: Google Scholar
  9. S. L. Campbell, Singular Systems of Differential Equations, vol. I, Pitman, San Francisco, Calif, USA, 1980.
  10. S. L. Campbell, Singular Systems of Differential Equations, vol. II, Pitman, San Francisco, Calif, USA, 1982.
  11. L. Dai, Singular Control Systems, Springer, New York, NY, USA, 1989.
  12. M. Darouach, M. Zasadzinski, and S. J. Xu, ā€œFull-order observers for linear systems with unknown inputs,ā€ IEEE Transactions on Automatic Control, vol. 39, no. 3, pp. 606ā€“609, 1994. View at: Publisher Site | Google Scholar
  13. M. Darouach and M. Boutayeb, ā€œDesign of observers for descriptor systems,ā€ IEEE Transactions on Automatic Control, vol. 40, no. 7, pp. 1323ā€“1327, 1995. View at: Publisher Site | Google Scholar
  14. M. Darouach, M. Zasadzinski, and M. Hayar, ā€œReduced-order observer design for descriptor systems with unknown inputs,ā€ IEEE Transactions on Automatic Control, vol. 41, no. 7, pp. 1068ā€“1072, 1996. View at: Google Scholar
  15. G. Lu and D. W. C. Ho, ā€œFull-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach,ā€ IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 563ā€“567, 2006. View at: Publisher Site | Google Scholar
  16. M. Darouach and L. Boutat-Baddas, ā€œObservers for a class of nonlinear singular systems,ā€ IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2627ā€“2633, 2008. View at: Publisher Site | Google Scholar
  17. M. Darouach, M. Zasadzinski, and D. Mehdi, ā€œState estimation of stochastic singular linear systems,ā€ International Journal of Systems Science, vol. 24, pp. 345ā€“354, 1993. View at: Google Scholar
  18. R. Nikoukhah, A. Willsky, and B. Levy, ā€œKalman filtering and Riccati equations for descriptor systems,ā€ IEEE Transactions on Automatic Control, vol. 37, no. 9, pp. 1325ā€“1342, 1992. View at: Publisher Site | Google Scholar
  19. R. Nikoukhah, S. Campbell, and F. Delebecque, ā€œKalman filtering for general discrete-time linear systems,ā€ IEEE Transactions on Automatic Control, vol. 34, no. 10, pp. 1829ā€“1839, 1999. View at: Publisher Site | Google Scholar
  20. J. Watson and K. Grigoriadis, ā€œOptimal unbiased filtering via linear matrix inequalities,ā€ Systems and Control Letters, vol. 35, no. 2, pp. 111ā€“118, 1998. View at: Google Scholar
  21. S. Xu, J. Lam, and Y. Zou, ā€œHāˆž filtering for singular systems,ā€ IEEE Transactions on Automatic Control, vol. 48, no. 12, pp. 2217ā€“2222, 2003. View at: Publisher Site | Google Scholar
  22. S. Xu and J. Lam, ā€œReduced-orde Hāˆž observering for singular systems,ā€ Systems & Control Letters, vol. 56, pp. 48ā€“57, 2007. View at: Google Scholar
  23. M. Darouach, ā€œHāˆž unbiased observering for descriptor systems via LMI,ā€ IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1966ā€“1972, 2009. View at: Google Scholar

Copyright © 2011 Mohamed Zerrougui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.