Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2012 (2012), Article ID 194397, 12 pages
http://dx.doi.org/10.1155/2012/194397
Research Article

Experimental Studies of Neural Network Control for One-Wheel Mobile Robot

Intelligent Systems and Emotional Engineering (I.S.E.E.) Laboratory, Department of Mechatronics Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea

Received 18 July 2011; Revised 28 January 2012; Accepted 14 February 2012

Academic Editor: Haibo He

Copyright © 2012 P. K. Kim and S. Jung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Segway,” http://www.segway.com/.
  2. S. H. Jeong and T. Takayuki, “Wheeled inverted pendulum type assistant robot: design concept and mobile control,” in Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS '07), p. 1937, 1932, 2007.
  3. S. S. Kim and S. Jung, “Control experiment of a wheel-driven mobile inverted pendulum using neural network,” IEEE Transactions on Control Systems Technology, vol. 16, no. 2, pp. 297–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Noh, G. H. Lee, H. J. Choi, and S. Jung, “Robust control of a mobile inverted pendulum robot using a RBF neural network controller,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO '08), pp. 1932–1937, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. J. Lee and S. Jung, “Development of car like mobile inverted pendulum system : BalBOT VI,” The Korean Robotics Society, vol. 4, no. 4, pp. 289–297, 2009. View at Google Scholar
  6. C. Rui and N. H. McClamroch, “Stabilization and asymptotic path tracking of a rolling disk,” in Proceedings of the 34th IEEE Conference on Decision and Control, pp. 4294–4299, December 1995. View at Scopus
  7. G. C. Nandy and Y. Xu, “Dynamic model of a gyroscopic wheel,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2683–2688, May 1998. View at Scopus
  8. Y. Xu, K. W. Au, G. C. Nandy, and H. B. Brown, “Analysis of actuation and dynamic balancing for a single wheel robot,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1789–1794, October 1998. View at Scopus
  9. Y. Xu, H. B. Brown, and K. W. Au, “Dynamic mobility with single-wheel configuration,” International Journal of Robotics Research, vol. 18, no. 7, pp. 728–738, 1999. View at Google Scholar · View at Scopus
  10. S. J. Tsai, E. D. Ferreira, and C. J. Raredis, “Control of the gyrover: a single-wheel gyroscopically stabilized robot,” in Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS '99), pp. 179–184, 1999.
  11. Y. Xu and S. K. W. Au, “Stabilization and path following of a single wheel robot,” IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, pp. 407–419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. S. Xu and Y. S. Ou, Control of One-Wheel Robots, Springer, 2005.
  13. W. Nukulwuthiopas, S. Laowattana, and T. Maneewarn, “Dynamic modeling of a one-wheel robot by using Kane’s method,” in Proceedings of the IEEE International Conference on Industrial Technology, (IEEE ICIT '02), pp. 524–529, 2002.
  14. A. Alasty and H. Pendar, “Equations of motion of a single-wheel robot in a rough terrain,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 879–884, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Zhu, A. Al Mamun, P. Vadakkepat, and T. H. Lee, “Line tracking of the Gyrobot—a gyroscopically stabilized single-wheeled robot,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO '06), pp. 293–298, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Zhu, M. P. Naing, and A. Al-Mamun, “Integrated ADAMS+MATLAB environment for design of an autonomous single wheel robot,” in Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society, (IECON '09), pp. 2253–2258, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA '06), pp. 2884–2889, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Nagarajan, A. Mampetta, G. A. Kantor, and R. L. Hollis, “State transition, balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'10), pp. 998–1003, 2009.
  19. U. Nagarajan, G. Kantor, and R. L. Hollis, “Trajectory planning and control of an underactuated dynamically stable single spherical wheeled mobile robot,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA '09), pp. 3743–3748, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. K. Kim, J. H. Park, and S. Jung, “Experimental studies of balancing control for a disc-typed mobile robot using a neural controller: GYROBO,” in Proceedings of the IEEE International Symposium on Intelligent Control, (ISIC '10), pp. 1499–1503, September 2010. View at Publisher · View at Google Scholar · View at Scopus