Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2012 (2012), Article ID 545731, 9 pages
Research Article

An Output-Recurrent-Neural-Network-Based Iterative Learning Control for Unknown Nonlinear Dynamic Plants

Department of Electronic Engineering, Huafan University, Shihding, New Taipei City 223, Taiwan

Received 31 July 2011; Revised 9 November 2011; Accepted 1 December 2011

Academic Editor: Isaac Chairez

Copyright © 2012 Ying-Chung Wang and Chiang-Ju Chien. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We present a design method for iterative learning control system by using an output recurrent neural network (ORNN). Two ORNNs are employed to design the learning control structure. The first ORNN, which is called the output recurrent neural controller (ORNC), is used as an iterative learning controller to achieve the learning control objective. To guarantee the convergence of learning error, some information of plant sensitivity is required to design a suitable adaptive law for the ORNC. Hence, a second ORNN, which is called the output recurrent neural identifier (ORNI), is used as an identifier to provide the required information. All the weights of ORNC and ORNI will be tuned during the control iteration and identification process, respectively, in order to achieve a desired learning performance. The adaptive laws for the weights of ORNC and ORNI and the analysis of learning performances are determined via a Lyapunov like analysis. It is shown that the identification error will asymptotically converge to zero and repetitive output tracking error will asymptotically converge to zero except the initial resetting error.