Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2012, Article ID 736586, 8 pages
http://dx.doi.org/10.1155/2012/736586
Research Article

Neural Network Compensation Control for Output Power Optimization of Wind Energy Conversion System Based on Data-Driven Control

1Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China
2Department of Mechanical and Electrical Engineering, Shan Dong Water Polytechnic, Rizhao 276826, China

Received 29 March 2012; Revised 8 May 2012; Accepted 17 May 2012

Academic Editor: Wen Yu

Copyright © 2012 T. Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Lin and C. M. Hong, “Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system,” Energy, vol. 35, no. 6, pp. 2440–2447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Y. Lee, P. H. Chen, and Y. X. Shen, “Maximum power point tracking (MPPT) system of small wind power generator using RBFNN approach,” Expert Systems with Applications, vol. 38, no. 10, pp. 12058–12065, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Camblong, I. M. de Alegria, M. Rodriguez, and G. Abad, “Experimental evaluation of wind turbines maximum power point tracking controllers,” Energy Conversion and Management, vol. 47, no. 18-19, pp. 2846–2858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. A. Bossanyi, “The design of closed loop controllers for wind turbines,” Wind Energy, vol. 3, no. 3, pp. 149–163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Muljadi, K. Pierce, and P. Migliore, “A conservative control strategy for variable-speed stall regulated wind turbines,” Tech. Rep. NREL/CP-500-24791, National Renewable Energy Laboratory, Golden, Colo, USA, 2000. View at Google Scholar
  6. I. Munteanu, N. A. Cutululis, A. I. Bratcu, and E. Ceangǎ, “Optimization of variable speed wind power systems based on a LQG approach,” Control Engineering Practice, vol. 13, no. 7, pp. 903–912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. E. B. Muhando, T. Senjyu, H. Kinjo, and T. Funabashi, “Augmented LQG controller for enhancement of online dynamic performance for WTG system,” Renewable Energy, vol. 33, no. 8, pp. 1942–1952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Calderaro, V. Galdi, A. Piccolo, and P. Siano, “A fuzzy controller for maximum energy extraction from variable speed wind power generation systems,” Electric Power Systems Research, vol. 78, no. 6, pp. 1109–1118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. M. Tian, G. Chen, and S. Chen, “A data-based approach for multivariate model predictive control performance monitoring,” Neurocomputing, vol. 74, no. 4, pp. 588–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. van Helvoort, B. de Jager, and M. Steinbuch, “Direct data-driven recursive controller unfalsification with analytic update,” Automatica, vol. 43, no. 12, pp. 2034–2046, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. O. Guardabassi and S. M. Savaresi, “Virtual reference direct design method: an off-line approach to data-based control system design,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 954–959, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. S. Hou and W. H. Huang, “The model-free learning adaptive control of a class of SISO nonlinear systems,” in Proceedings of the American Control Conference, pp. 343–344, Albuquerque, NM, USA, June 1997. View at Scopus
  13. J. C. Spall and J. A. Cristion, “Model-free control of nonlinear stochastic systems with discrete-time measurements,” IEEE Transactions on Automatic Control, vol. 43, no. 9, pp. 1198–1210, 1998. View at Google Scholar · View at Scopus
  14. Z.-S. Hou and J.-W. Yan, “Model free adaptive control based freeway ramp metering with feed forward iterative learning controller,” Acta Automatica Sinica, vol. 35, no. 5, pp. 588–595, 2009. View at Google Scholar · View at Scopus
  15. C. S. Byington, M. Watson, and D. Edwards, “Data-driven neural network methodology to remaining life predictions for aircraft actuator components,” in Proceedings of the IEEE Aerospace Conference Proceedings, pp. 3581–3589, New York, NY, USA, March 2004. View at Scopus
  16. J.-X. Xu and Z.-S. Hou, “Notes on data-driven system approaches,” Acta Automatica Sinica, vol. 35, no. 6, pp. 668–675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Lee and S. Narayanan, “Emotion recognition using a data-driven fuzzy inference system,” in Proceedings of the European Conference on Speech Communication and Technology, pp. 157–160, 2003.
  18. M. Al-Khatib and J. J. Saade, “An efficient data-driven fuzzy approach to the motion planning problem of a mobile robot,” Fuzzy Sets and Systems, vol. 134, no. 1, pp. 65–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Khoukhi, “Data-driven multi-stage motion planning of parallel kinematic machines,” IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp. 1381–1389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Hou and S. Jin, “A novel data-driven control approach for a class of discrete-time nonlinear systems,” IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1549–1558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Hou and X. Bu, “Model free adaptive control with data dropouts,” Expert Systems with Applications, vol. 38, no. 8, pp. 10709–10717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. L. D. S. Coelho, M. W. Pessôa, R. R. Sumar, and A. A. R. Coelho, “Model-free adaptive control design using evolutionary-neural compensator,” Expert Systems with Applications, vol. 37, no. 1, pp. 499–508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Yamuna Rani, “Sensitivity compensating control: data-driven model based adaptive approach,” Journal of Process Control, vol. 21, no. 9, pp. 1265–1286, 2011. View at Google Scholar
  24. K. Methaprayoon, C. Y. Vivatana Pong, W.-J. Lee, and J. R. Liao, “An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty,” IEEE Transactions on Industry Applications, vol. 43, no. 6, pp. 1441–1448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. C. Alexiadis, P. S. Dokopoulos, and H. S. Sahsamanoglou, “Wind speed and power forecasting based on spatial correlation models,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 836–842, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Sargolzaei and A. Kianifar, “Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque,” Simulation Modelling Practice and Theory, vol. 17, no. 7, pp. 1290–1298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Yilmaz and Z. Özer, “Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks,” Expert Systems with Applications, vol. 36, no. 6, pp. 9767–9775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Bayat, M. Sedighizadeh, and A. Rezazadeh, “Wind energy conversion systems control using inverse neural model algorithm,” International Journal of Engineering and Applied Sciences, vol. 2, no. 3, pp. 40–46, 2010. View at Google Scholar
  29. A. Kusiak and H. Zheng, “Optimization of wind turbine energy and power factor with an evolutionary computation algorithm,” Energy, vol. 35, no. 3, pp. 1324–1332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kusiak, H. Zheng, and Z. Song, “Power optimization of wind turbines with data mining and evolutionary computation,” Renewable Energy, vol. 35, no. 3, pp. 695–702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Yang and V. Ajjarapu, “A speed-adaptive reduced-order observer for sensorless vector control of doubly fed induction generator-based variable-speed wind turbines,” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 891–900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. Rubio, M. Figueroa, J. Pacheco, and M. Jimenes-Lizarraga, “Observer design based in the mathematical model of a wind turbine,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 12, pp. 6711–6725, 2011. View at Google Scholar
  33. J. J. Rubio, P. Angelov, and J. Pacheco, “Uniformly stable backpropagation algorithm to train a feedforward neural network,” IEEE Transactions on Neural Networks, vol. 22, no. 3, pp. 356–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Ren and X. Lv, “Identification of extended Hammerstein systems using dynamic self-optimizing neural networks,” IEEE Transactions on Neural Networks, vol. 22, no. 8, pp. 1169–1179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. C. K. Ahn, “Takagi-Sugeno fuzzy hopfield neural networks for H nonlinear system identification,” Neural Processing Letters, vol. 34, no. 1, pp. 59–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. Rubio, F. Ortiz, C. R. Mariaca, and J. C. Tovar, “A method for online pattern recognition of abnormal eye movements,” Neural Computing and Applications. In press. View at Publisher · View at Google Scholar
  37. A. Kusiak, Z. Zhang, and M. Y. Li, “Optimization of wind turbine performance with data-driven models,” IEEE Transactions on Sustainable Energy, vol. 1, no. 2, pp. 66–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Kusiak and Z. Zhang, “Adaptive control of a wind turbine with data mining and swarm intelligence,” IEEE Transactions on Sustainable Energy, vol. 2, no. 1, pp. 28–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Furuta and M. Wongsaisuwan, “A generalized inversed inverse solution to the discrete-time singular riccati equation,” IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 395–398, 1981. View at Google Scholar
  40. J. J. Rubio, P. Angelov, and J. Pacheco, “Uniformly stable backpropagation algorithm to train a feedforward neural network,” IEEE Transactions on Neural Networks, vol. 22, no. 3, pp. 356–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Ren and X. Lv, “Identification of extended Hammerstein systems using dynamic self-optimizing neural networks,” IEEE Transactions on Neural Networks, vol. 22, no. 8, pp. 1169–1179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. K. Ahn, “Takagi-Sugeno fuzzy hopfield neural networks for H nonlinear system identification,” Neural Processing Letters, vol. 34, no. 1, pp. 59–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. J. Rubio, F. Ortiz, C. R. Mariaca, and J. C. Tovar, “A method for online pattern recognition of abnormal eye movements,” Neural Computing and Applications. In press. View at Publisher · View at Google Scholar