Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2013, Article ID 498461, 7 pages
Research Article

Optimal Robust Adaptive Fuzzy Tracking Control without Reaching Phase for Nonlinear System

LESSI Laboratory, Department of Physics, Faculty of Sciences Dhar El Mehraz, B.P 1796, FES-Atlas 30000, Morocco

Received 25 January 2013; Accepted 28 March 2013

Academic Editor: Mohamed Zribi

Copyright © 2013 El Mehdi Mellouli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An optimal tracking-based indirect adaptive fuzzy controller for a class of perturbed uncertain affine nonlinear systems without reaching phase is being developed in this paper. First a practical Interval Type-2 (IT2) fuzzy system is used in an adaptive scheme to approximate the system using a nonlinear model and to determine the optimal value of the gain control. Secondly, to eliminate the trade-off between tracking performance and high gain at the control input, a modified output tracking error has been used. The stability is ensured through Lyapunov synthesis and the effectiveness of the proposed method is proved and the simulation is also given to illustrate the superiority of the proposed approach.