Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2012, Article ID 103973, 17 pages
http://dx.doi.org/10.1155/2012/103973
Review Article

Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications

1NCE-Polymer Chemistry Group, Piramal Life Sciences Ltd., 1 Nirlon Complex, Off Western Express Highway, Goregaon (E), Mumbai 400063, India
2Semler Research Center Pvt Ltd., 75A, 15th Cross, I Phase, J. P. Nagar, Bangalore 560078, India

Received 11 October 2011; Revised 3 January 2012; Accepted 5 January 2012

Academic Editor: Abhijit A. Date

Copyright © 2012 Shashwat S. Banerjee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, “Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives,” Angewandte Chemie—International Edition, vol. 49, no. 36, pp. 6288–6308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Webster, E. Didier, P. Harris et al., “PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies,” Drug Metabolism and Disposition, vol. 35, no. 1, pp. 9–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Duncan, “The dawning era of polymer therapeutics,” Nature Reviews Drug Discovery, vol. 2, no. 5, pp. 347–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nature Reviews Cancer, vol. 6, no. 9, pp. 688–701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Milton Harris and R. B. Chess, “Effect of pegylation on pharmaceuticals,” Nature Reviews Drug Discovery, vol. 2, no. 3, pp. 214–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Khandare and T. Minko, “Polymer-drug conjugates: progress in polymeric prodrugs,” Progress in Polymer Science, vol. 31, no. 4, pp. 359–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ringsdorf, “Structure and properties of pharmacologically active polymers,” Journal of Polymer Science Part C, no. 51, pp. 135–153, 1975. View at Google Scholar · View at Scopus
  8. D. Filpula and H. Zhao, “Releasable PEGylation of proteins with customized linkers,” Advanced Drug Delivery Reviews, vol. 60, no. 1, pp. 29–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. D. Hinds, “Protein conjugation, cross-linking, and PEGylation,” in biomaterials for Delivery and Targeting of Proteins and Nucleic Acids, R. I. Mahato, Ed., pp. 119–185, CRC Press, Boca Raton, Fla, USA, 2005. View at Google Scholar
  10. A. Abuchowski, T. Van Es, N. C. Palczuk, and F. F. Davis, “Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol,” The Journal of Biological Chemistry, vol. 252, no. 11, pp. 3578–3581, 1977. View at Google Scholar · View at Scopus
  11. A. Abuchowski, J. R. McCoy, and N. C. Palczuk, “Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase,” The Journal of Biological Chemistry, vol. 252, no. 11, pp. 3582–3586, 1977. View at Google Scholar · View at Scopus
  12. R. B. Greenwald, “Drug delivery systems: anticancer prodrugs and their polymeric conjugates,” Expert Opinion on Therapeutic Patents, vol. 7, no. 6, pp. 601–609, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. H. Sehon, “Suppression of antibody responses by conjugates of antigens and monomethoxypoly(ethylene glycol),” Advanced Drug Delivery Reviews, vol. 6, no. 2, pp. 203–217, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Dreborg and E. B. Akerblom, “Immunotherapy with monomethoxypolyethylene glycol modified allergens,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 6, no. 4, pp. 315–365, 1990. View at Google Scholar · View at Scopus
  15. Y. Okahata and T. Mori, “Lipid-coated enzymes as efficient catalysts in organic media,” Trends in Biotechnology, vol. 15, no. 2, pp. 50–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Inada, M. Furukawa, H. Sasaki et al., “Biomedical and biotechnological applications of PEG- and PM-modified proteins,” Trends in Biotechnology, vol. 13, no. 3, pp. 86–91, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kopecek, “Synthesis of tailor-made soluble polymeric drug carriers,” in Recent advances in Drug Delivery Systems, J. Anderson and S. Kim, Eds., pp. 41–62, Kluwer Academic/Plenum, New York, NY, USA, 1984. View at Google Scholar
  18. M. D. Bentley, J. M. Harris, and A. Kozlowski, “Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation,” P.C.T. US99/23536, 1999.
  19. R. Satchi-Fainaro, W. Wrasidlo, H. N. Lode, and D. Shabat, “Synthesis and characterization of a catalytic antibody-HPMA copolymer-conjugate as a tool for tumor selective prodrug activation,” Bioorganic and Medicinal Chemistry, vol. 10, no. 9, pp. 3023–3029, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. H. Choe, C. D. Conover, D. Wu, M. Royzen, and R. B. Greenwald, “Anticancer drug delivery systems: N4-acyl poly(ethyleneglycol) prodrugs of ara-C: I. Efficacy in solid tumors,” Journal of Controlled Release, vol. 79, no. 1–3, pp. 41–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. H. Choe, C. D. Conover, D. Wu et al., “Anticancer drug delivery systems: multi-loaded N4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors,” Journal of Controlled Release, vol. 79, no. 1–3, pp. 55–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Schiavon, G. Pasut, S. Moro, P. Orsolini, A. Guiotto, and F. M. Veronese, “PEG-Ara-C conjugates for controlled release,” European Journal of Medicinal Chemistry, vol. 39, no. 2, pp. 123–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Hermanson, Bioconjugate Techniques, Academic Press, San Diego, Calif, USA, 1996.
  24. L. J. Cruz, E. Iglesias, J. C. Aguilar et al., “Study of different coupling agents in the conjugation of a V3-based synthetic MAP to carrier proteins,” Journal of Peptide Science, vol. 7, no. 9, pp. 511–518, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Minko, “Drug targeting to the colon with lectins and neoglycoconjugates,” Advanced Drug Delivery Reviews, vol. 56, no. 4, pp. 491–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. S. Dharap, Y. Wang, P. Chandna et al., “Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12962–12967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, “Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review,” Journal of Controlled Release, vol. 65, no. 1-2, pp. 271–284, 2000. View at Publisher · View at Google Scholar
  28. W. A. Marinaro and V. J. Stella, “Macromolecular prodrugs of small molecules,” in Prodrugs, V. J. Stella, R. T. Borchardt, M. J. Hageman, R. Oliyai, H. Maag, and J. Tilley, Eds., pp. 289–321, Springer, New York, NY, USA, 2007. View at Google Scholar
  29. K. Greish, “Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines,” Journal of Drug Targeting, vol. 15, no. 7-8, pp. 457–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Haag and F. Kratz, “Polymer therapeutics: concepts and applications,” Angewandte Chemie—International Edition, vol. 45, no. 8, pp. 1198–1215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. David, P. Kopečková, T. Minko, A. Rubinstein, and J. Kopeček, “Design of a multivalent galactoside ligand for selective targeting of HPMA copolymer-doxorubicin conjugates to human colon cancer cells,” European Journal of Cancer, vol. 40, no. 1, pp. 148–157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. L. W. Seymour, Y. Miyamoto, H. Maeda et al., “Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier,” European Journal of Cancer Part A, vol. 31, no. 5, pp. 766–770, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Minko, S. S. Dharap, R. I. Pakunlu, and Y. Wang, “Molecular targeting of drug delivery systems to cancer,” Current Drug Targets, vol. 5, no. 4, pp. 389–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. S. Dharap, B. Qiu, G. C. Williams, P. Sinko, S. Stein, and T. Minko, “Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides,” Journal of Controlled Release, vol. 91, no. 1-2, pp. 61–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Choksi, Comparative studies of liposome and dendrimer prodrug conjugates of dexamethasone for in vitro anti-inflammatory activity, M.S. thesis, VIT University, 2011.
  36. S. Zalipsky, “Chemistry of polyethylene glycol conjugates with biologically,” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 157–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. F. F. Davis, T. Van Es, and N. C. Palczuk, “Non-immunogenic polypeptides,” US Patent 4179337, 1979.
  38. I. C. Macdougall and K. U. Eckardt, “Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia,” The Lancet, vol. 368, no. 9539, pp. 947–953, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. I. C. Macdougall, R. Robson, S. Opatrna et al., “Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 1, no. 6, pp. 1211–1215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Robert, N. Carlo, and R. Perry, “Peg-interferon conjugates,” US Patent 5382657, 1995.
  41. S. Pradhananga, I. Wilkinson, and R. J. M. Ross, “Pegvisomant: structure and function,” Journal of Molecular Endocrinology, vol. 29, no. 1, pp. 11–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Fuh, B. C. Cunningham, R. Fukunaga, S. Nagata, D. V. Goeddel, and J. A. Wells, “Rational design of potent antagonists to the human growth hormone receptor,” Science, vol. 256, no. 5064, pp. 1677–1680, 1992. View at Google Scholar · View at Scopus
  43. B. C. Cunningham, H. B. Lowman, J. A. Wells, R. G. Clark, K. Olson, and G. G. Fuh, “Method for inhibiting growth hormone action,” US Patent 6057292, 2000.
  44. O. B. Kinstler, N. E. Gabriel, C. E. Farrar, and R. B. De Prince, “N-terminally Chemically Modified Protein Compositions and Methods,” US Patent 5824784, 1998.
  45. L. D. Williams, M. S. Hershfield, S. J. Kelly, M. G. P. Saifer, and M. R. Sherman, “PEG-urate oxidase conjugates and use thereof,” US Patent 7723089, 2010.
  46. M. R. Sherman, M. G. P. Saifer, and F. Perez-Ruiz, “PEG-uricase in the management of treatment-resistant gout and hyperuricemia,” Advanced Drug Delivery Reviews, vol. 60, no. 1, pp. 59–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Pasut, F. Canal, L. Dalla Via, S. Arpicco, F. M. Veronese, and O. Schiavon, “Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid,” Journal of Controlled Release, vol. 127, no. 3, pp. 239–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Zacchigna, F. Cateni, S. Drioli, and G. M. Bonora, “Multimeric, multifunctional derivatives of poly(ethylene glycol),” Polymers, vol. 3, no. 3, pp. 1076–1090, 2011. View at Publisher · View at Google Scholar
  49. G. Pasut, S. Scaramuzza, O. Schiavon, R. Mendichi, and F. M. Veronese, “PEG-epirubicin conjugates with high drug loading,” Journal of Bioactive and Compatible Polymers, vol. 20, no. 3, pp. 213–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Pasut and F. M. Veronese, “PEG conjugates in clinical development or use as anticancer agents: an overview,” Advanced Drug Delivery Reviews, vol. 61, no. 13, pp. 1177–1188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. V. J. Stella, R. T. Borchardt, M. J. Hageman, R. Oliyai, H. Maag, and J. W. Tilley, Prodrugs: challenges and Rewards, vol. 1-2, AAPS Press and Springer, New York, NY, USA, 2007.
  52. D. S. Pisal, M. P. Kosloski, and S. V. Balu-Iyer, “Delivery of therapeutic proteins,” Journal of Pharmaceutical Sciences, vol. 99, no. 6, pp. 2557–2575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Zhao, B. Rubio, P. Sapra et al., “Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers,” Bioconjugate Chemistry, vol. 19, no. 4, pp. 849–859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Pechar, K. Ulbrich, M. Jelınkova, and B. Rıhova, “Enzymatically degradable PEG multiblock copolymers with hydrazone attached doxorubicin in cancer therapy,” in Proceedings of the 6th European Symposium on Controlled Drug Delivery, pp. 155–156, Noordwijk aan Zee, The Netherlands, 2000.
  55. B. Ríhová, T. Etrych, M. Pechar et al., “Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes,” Journal of Controlled Release, vol. 74, no. 1–3, pp. 225–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Ulbrich, T. Etrych, P. Chytil, M. Pechar, M. Jelinkova, and B. Rihova, “Polymeric anticancer drugs with pH-controlled activation,” International Journal of Pharmaceutics, vol. 277, no. 1-2, pp. 63–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Ulbrich, T. Etrych, P. Chytil, M. Pechar, M. Jelınkova, and B. Rıhova, “Novel generation of polymer—drug-carrier systems for site-specific therapy,” in Proceedings of the 7th European Symposium on Controlled Drug Delivery Systems, pp. 3–15, Noordwijk aan Zee, The Netherlands, 2002.
  58. A. A. Vaidya, B. S. Lele, M. G. Kulkarni, and R. A. Mashelkar, “Enhancing ligand-protein binding in affinity thermoprecipitation: elucidation of spacer effects,” Biotechnology and Bioengineering, vol. 64, no. 4, pp. 418–425, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. R. G. Melton, “Preparation and purification of antibody-enzyme conjugates for therapeutic applications,” Advanced Drug Delivery Reviews, vol. 22, no. 3, pp. 289–301, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Booth, M. Hershfield, L. Notarangelo et al., “Management options for adenosine deaminase deficiency; proceedings of the EBMT satellite workshop (Hamburg, March 2006),” Clinical Immunology, vol. 123, no. 2, pp. 139–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. B. E. Bax, M. D. Bain, L. D. Fairbanks, A. D. B. Webster, and R. A. Chalmers, “In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol-conjugated and native adenosine deaminase,” British Journal of Haematology, vol. 109, no. 3, pp. 549–554, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Hershfield, R. H. Buckley, and M. L. Greenberg, “Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase,” The New England Journal of Medicine, vol. 316, no. 10, pp. 589–596, 1987. View at Google Scholar
  63. J. D. Broome, “Evidence that the L-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects,” Nature, vol. 191, no. 4793, pp. 1114–1115, 1961. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Killander, A. Dohlwitz, and L. Engstedt, “Hypersensitive reactions and antibody formation during L-asparaginase treatment of children and adults with acute leukemia,” Cancer, vol. 37, no. 1, pp. 220–228, 1976. View at Google Scholar
  65. V. I. Avramis and P. N. Tiwari, “Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia,” International Journal of Nanomedicine, vol. 1, no. 3, pp. 241–254, 2006. View at Google Scholar · View at Scopus
  66. M. L. Graham, “Pegaspargase: a review of clinical studies,” Advanced Drug Delivery Reviews, vol. 55, no. 10, pp. 1293–1302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. D. H. Ho, N. S. Brown, and A. Yen, “Clinical pharmacology of polyethylene glycol-L-asparaginase,” Drug Metabolism and Disposition, vol. 14, no. 3, pp. 349–352, 1986. View at Google Scholar
  68. A. M. Eggermont, S. Suciu, M. Santinami et al., “Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial,” The Lancet, vol. 372, no. 9633, pp. 117–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. P. Lea, K. Norris, and L. Agodoa, “The role of anemia management in improving outcomes for african-americans with chronic kidney disease,” American Journal of Nephrology, vol. 28, no. 5, pp. 732–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Hertel, H. Locay, D. Scarlata, L. Jackson, R. Prathikanti, and P. Audhya, “Darbepoetin alfa administered every other week maintains hemoglobin levels over 52 weeks in patients with chronic kidney disease converting from once-weekly recombinant human erythropoietin: results from Simplify the Treatment of Anemia with Aranesp (STAAR),” American Journal of Nephrology, vol. 26, no. 2, pp. 149–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. W. Fried, M. L. Shiffman, K. Rajender Reddy et al., “Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection,” The New England Journal of Medicine, vol. 347, no. 13, pp. 975–982, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Rajender Reddy, M. W. Modi, and S. Pedder, “Use of peginterferon alfa-2a (40 KD) (Pegasys®) for the treatment of hepatitis C,” Advanced Drug Delivery Reviews, vol. 54, no. 4, pp. 571–586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Zeuzem, S. V. Feinman, J. Rasenack et al., “Peginterferon alfa-2a in patients with chronic hepatitis C,” The New England Journal of Medicine, vol. 343, no. 23, pp. 1666–1672, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. M. P. Manns, J. G. McHutchison, S. C. Gordon et al., “Peginterferon alfa-2b plus ribavirin compared with interferonalfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” The Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. R. M. Bukowski, C. Tendler, D. Cutler, E. Rose, M. M. Laughlin, and P. Statkevich, “Treating cancer with PEG intron: pharmacokinetic profile and dosing guidelines for an improved interferon-alpha-2b formulation,” Cancer, vol. 95, no. 2, pp. 389–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. C. W. Taylor, R. T. Dorr, P. Fanta, E. M. Hersh, and S. E. Salmon, “A phase I and pharmacodynamic evaluation of polyethylene glycol-conjugated L-asparaginase in patients with advanced solid tumors,” Cancer Chemotherapy and Pharmacology, vol. 47, no. 1, pp. 83–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. P. A. Dinndorf, J. Gootenberg, M. H. Cohen, P. Keegan, and R. Pazdur, “FDA drug approval summary: pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL),” Oncologist, vol. 12, no. 8, pp. 991–998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. J. P. Vieira Pinheiro, H. J. Müller, D. Schwabe et al., “L-asparaginase (Oncaspar®) in children with relapsed acute lymphoblastic leukemia,” British Journal of Haematology, vol. 113, no. 1, pp. 115–119, 2001. View at Google Scholar
  79. N. R. Agrawal, R. M. Bukowski, L. A. Rybicki, J. Kurtzberg, L. J. Cohen, and M. A. Hussein, “A Phase I-II trial of polyethylene glycol-conjugated L-asparaginase in patients with multiple myeloma,” Cancer, vol. 98, no. 1, pp. 94–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. L. J. Ettinger, J. Kurtzberg, P. A. Voute, H. Jurgens, and S. L. Halpern, “An open-label, multicenter study of polyethylene glycol-L-asparaginase for the treatment of acute lymphoblastic leukemia,” Cancer, vol. 75, no. 5, pp. 1176–1181, 1995. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Kurtzberg, J. O. Moore, D. Scudiery, and A. Franklin, “A Phase II study of polyethylene glycol (PEG) conjugated L-asparaginase in patients with refractory acute leukemias,” Proceedings of the American Association for Cancer Research, vol. 29, p. 213, 1988. View at Google Scholar
  82. D. Douer, L. J. Cohen, L. A. Periclou, K. Watkins, A. M. Levine, and V. I. Avramis, “Peg—L-asparaginase (PEG–ASP): phar- macokinetics (PK) and clinical response in newly diagnosed adults with acute lymphoblastic leukemia (ALL) treated with multiagent chemotherapy,” Blood, vol. 90, p. 334a, 1997. View at Google Scholar
  83. A. Aguayo, J. Cortes, D. Thomas, S. Pierce, M. Keating, and H. Kantarjian, “Combination therapy with methotrexate, vincristine, polyethylene-glycol conjugated-asparaginase, and prednisone in the treatment of patients with refractory or recurrent acute lymphoblastic leukemia,” Cancer, vol. 86, no. 7, pp. 1203–1209, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Tulpule, B. Espina, M. Palmer et al., “Preliminary results of PEG asparaginase (Oncaspar) in the treatment of relapsed/refractory AIDS-related lymphomas,” Journal of Acquired Immune Deficiency Syndromes & Human Retrovirology, vol. 17, p. A31, 1998. View at Google Scholar
  85. J. Kurtzberg, B. Asselin, B. Pollack, M. Bernstein, and G. Buchanan, “Peg—L-asparaginase (PEGasp) versus native E. coliL-asparaginase for the reinduction of relapsed acute lymphoblastic leukemia: POG no. 8866 phase II trial,” American Society of Clinical Oncology, vol. 12, p. 325, 1993. View at Google Scholar
  86. J. Holcenberg, S. Sencer, L. J. Cohen et al., “Randomized trial of PEG vs. native-L-asparaginase in children with newly diagnosed acute lymphoblastic leukemia (ALL): CCG study 1962,” Blood, vol. 94, p. 628, 1999. View at Google Scholar
  87. J. M. Kirkwood, J. G. Ibrahim, V. K. Sondak et al., “High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190,” Journal of Clinical Oncology, vol. 18, no. 12, pp. 2444–2458, 2000. View at Google Scholar · View at Scopus
  88. P. Bailon, A. Palleroni, C. A. Schaffer et al., “Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C,” Bioconjugate Chemistry, vol. 12, no. 2, pp. 195–202, 2001. View at Publisher · View at Google Scholar
  89. S. N. S. Alconcel, A. S. Baas, and H. D. Maynard, “FDA-approved poly(ethylene glycol)-protein conjugate drugs,” Polymer Chemistry, vol. 2, no. 7, pp. 1442–1448, 2011. View at Publisher · View at Google Scholar
  90. C. Parkinson, J. A. Scarlett, and P. J. Trainer, “Pegvisomant in the treatment of acromegaly,” Advanced Drug Delivery Reviews, vol. 55, no. 10, pp. 1303–1314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. P. J. Trainer, W. M. Drake, L. Katznelson et al., “Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant,” The New England Journal of Medicine, vol. 342, no. 16, pp. 1171–1177, 2000. View at Publisher · View at Google Scholar
  92. A. J. Van Der Lely, R. K. Hutson, P. J. Trainer et al., “Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist,” The Lancet, vol. 358, no. 9295, pp. 1754–1759, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. Somavert product information. Pfizer Pharmacia & Upjohn, 2008, http://www.pfizer.com/files/products/uspi_somavert.pdf.
  94. G. Molineux, “The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®),” Current Pharmaceutical Design, vol. 10, no. 11, pp. 1235–1244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. C. L. Vogel, M. Z. Wojtukiewicz, R. R. Carroll et al., “First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study,” Journal of Clinical Oncology, vol. 23, no. 6, pp. 1178–1184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. M. D. Green, H. Koelbl, J. Baselga et al., “On behalf of the International Pegfilgrastim 749 Study Group,” Annals Oncology, vol. 14, pp. 29–35, 2003. View at Google Scholar
  97. K. Welte, J. Gabrilove, M. H. Bronchud, E. Platzer, and G. Morstyn, “Filgrastim (r-metHuG-CSF): the first 10 years,” Blood, vol. 88, no. 6, pp. 1907–1929, 1996. View at Google Scholar · View at Scopus
  98. N. Schlesinger, U. Yasothan, and P. Kirkpatrick, “Pegloticase,” Nature Reviews Drug Discovery, vol. 10, no. 1, pp. 17–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. M. S. Hershfield, J. S. Sundy, N. J. Ganson, and S. J. Kelly, “Development of PEGylated mammalian urate oxidase as a therapy for patients with refractory gout,” in PEGylated Protein Drugs: Basic Science and Clinical Applications, pp. 217–227, Birkhäuser, Basel, Switzerland, 2009. View at Google Scholar
  100. J. S. Sundy, N. J. Ganson, S. J. Kelly et al., “Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout,” Arthritis and Rheumatism, vol. 56, no. 3, pp. 1021–1028, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. N. J. Ganson, S. J. Kelly, E. Scarlett, J. S. Sundy, and M. S. Hershfield, “Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase,” Arthritis Research and Therapy, vol. 8, no. 1, article R12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. S. K. Jung, P. P. DeLuca, and C. L. Kang, “Emerging PEGylated drugs,” Expert Opinion on Emerging Drugs, vol. 14, no. 2, pp. 363–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Biggers and N. Scheinfeld, “Pegloticase, a polyethylene glycol conjugate of uricase for the potential intravenous treatment of gout,” Current Opinion in Investigational Drugs, vol. 9, no. 4, pp. 422–429, 2008. View at Google Scholar · View at Scopus
  104. H. Zhao, C. Lee, P. Sai et al., “20-O-acylcamptothecin derivatives: evidence for lactone stabilization,” Journal of Organic Chemistry, vol. 65, no. 15, pp. 4601–4606, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. L. C. Scott, J. C. Yao, A. B. Benson et al., “A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma,” Cancer Chemotherapy and Pharmacology, vol. 63, no. 2, pp. 363–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Antonian, K. Burton, R. Goodin, and M. A. Eldon, “PEGylation governs the disposition and metabolism of irinotecan following administration of a novel PEG-Irinotecan conjugate,” European Journal of Cancer, vol. 5, supplement, p. 115, 2007. View at Google Scholar
  107. NKTR-102, a novel PEGylated-irinotecan conjugate, results in sustained tumor growth inhibition in mouse models of human colorectal and lung tumors that is associated with increased and sustained tumor SN38 exposure. Nektar Product information, 2007, http://www.nektar.com/pdf/pipeline/NKTR-102/NKTR-102.
  108. H. Maeda, T. Sawa, and T. Konno, “Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS,” Journal of Controlled Release, vol. 74, no. 1–3, pp. 47–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. http://enzon.com/posts/view/42.
  110. http://www.nektar.com/product_pipeline/all_phases.html.
  111. C. B. Thompson, H. M. Shepard, P. M. O'Connor et al., “Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models,” Molecular Cancer Therapeutics, vol. 9, no. 11, pp. 3052–3064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Duncan, “Polymer therapeutics as nanomedicines: new perspectives,” Current Opinion in Biotechnology, vol. 22, pp. 1–10, 2011. View at Google Scholar
  113. J. Khandare, A. Mohr, M. Calderón, P. Welker, K. Licha, and R. Haag, “Structure-biocompatibility relationship of dendritic polyglycerol derivatives,” Biomaterials, vol. 31, no. 15, pp. 4268–4277, 2010. View at Publisher · View at Google Scholar · View at Scopus