Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2012, Article ID 265691, 12 pages
http://dx.doi.org/10.1155/2012/265691
Review Article

Utilisation of Nanoparticle Technology in Cancer Chemoresistance

1Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida MSD 2060, Malta
2School of Medicine, Kanazawa University Hospital, University of Kanazawa, Kanazawa 920-1192, Japan

Received 6 August 2012; Revised 11 October 2012; Accepted 11 October 2012

Academic Editor: Michele Caraglia

Copyright © 2012 Duncan Ayers and Alessandro Nasti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Longley and P. G. Johnston, “Molecular mechanisms of drug resistance,” Journal of Pathology, vol. 205, no. 2, pp. 275–292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Kerbel, H. Kobayashi, and C. H. Graham, “Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes?” Journal of Cellular Biochemistry, vol. 56, no. 1, pp. 37–47, 1994. View at Google Scholar · View at Scopus
  3. D. S. Goodsell, “The molecular perspective: cisplatin,” Oncologist, vol. 11, no. 3, pp. 316–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. N. Kaludjerović, D. Miljković, M. Momcilović et al., “Novel platinum(IV) complexes induce rapid tumor cell death in vitro,” International Journal of Cancer, vol. 116, no. 3, pp. 479–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. L. Berg, J. B. Spitzer, and J. H. Garvin, “Ototoxic impact of cisplatin in pediatric oncology patients,” Laryngoscope, vol. 109, no. 11, pp. 1806–1814, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Li, R. B. Womer, and J. H. Silber, “Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose,” European Journal of Cancer, vol. 40, no. 16, pp. 2445–2451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Sastry and S. J. Kellie, “Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine,” Pediatric Hematology and Oncology, vol. 22, no. 5, pp. 441–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Arany and R. L. Safirstein, “Cisplatin nephrotoxicity,” Seminars in Nephrology, vol. 23, no. 5, pp. 460–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Jiang, X. Yi, S. Hsu, C. Y. Wang, and Z. Dong, “Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity,” American Journal of Physiology, vol. 287, no. 6, pp. F1140–F1147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-S. Chen, J. T. Lin, K. A. Goss, Y. A. He, J. R. Halpert, and D. J. Waxman, “Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics,” Molecular Pharmacology, vol. 65, no. 5, pp. 1278–1285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ateşşahin, G. Türk, I. Karahan, S. Yilmaz, A. O. Ceribaşi, and O. Bulmuş, “Lycopene prevents adriamycin-induced testicular toxicity in rats,” Fertility and Sterility, vol. 85, no. 1, pp. 1216–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Ferguson, F. Y. Ahmed, and J. Cassidy, “The role of pro-drug therapy in the treatment of cancer,” Drug Resistance Updates, vol. 4, no. 4, pp. 225–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. L. P. Swift, A. Rephaeli, A. Nudelman, D. R. Phillips, and S. M. Cutts, “Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death,” Cancer Research, vol. 66, no. 9, pp. 4863–4871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Chemocare. Doxorubicin, Adriamycin, Rubex—Chemotherapy Drugs, Chemo Drug Side Effects [Internet], 2011, http://www.chemocare.com/bio/doxorubicin.asp.
  15. P. K. Singal and N. Iliskovic, “Doxorubicin-induced cardiomyopathy,” The New England Journal of Medicine, vol. 339, no. 13, pp. 900–905, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. K. R. Hande, “Etoposide: four decades of development of a topoisomerase II inhibitor,” European Journal of Cancer, vol. 34, no. 10, pp. 1514–1521, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Duca, D. Guianvarc'h, K. Oussedik et al., “Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides,” Nucleic Acids Research, vol. 34, no. 6, pp. 1900–1911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. The Chemical Heritage Foundation. Magic Bullets, Chemistry vs. Cancer: Cancer Chemotherapy, a chemical needle in a haystack [Internet], 2001, http://www.chemheritage.org/EducationalServices/pharm/chemo/readings/ages.htm.
  19. D. A. Burden, P. S. Kingma, S. J. Froelich-Ammon et al., “Topoisomerase II-etoposide interactions direct the formation of drug- induced enzyme-DNA cleavage complexes,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29238–29244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Bagatell, P. Rumcheva, W. B. London et al., “Outcomes of children with intermediate-risk neuroblastoma after treatment stratified by MYCN status and tumor cell ploidy,” Journal of Clinical Oncology, vol. 23, no. 34, pp. 8819–8827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Electronic Medicines Compendium, What’s New—electronic Medicines Compendium (eMC) [Internet], 2010, http://www.medicines.org.uk/EMC/.
  22. A. R. Mistry, C. A. Felix, R. J. Whitmarsh et al., “DNA topoisomerase II in therapy-related acute promyelocytic leukemia,” The New England Journal of Medicine, vol. 352, no. 15, pp. 1529–1538, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. W. Robey, P. R. Massey, L. Amiri-Kordestani, and S. E. Bates, “ABC transporters: unvalidated therapeutic targets in cancer and the CNS,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 8, pp. 625–633, 2010. View at Google Scholar · View at Scopus
  24. R. Krishna and L. D. Mayer, “Multidrug resistance (MDR) in cancerMechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs,” European Journal of Pharmaceutical Sciences, vol. 11, no. 4, pp. 265–283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Colone, A. Calcabrini, L. Toccacieli et al., “The multidrug transporter P-glycoprotein: a mediator of melanoma invasion?” Journal of Investigative Dermatology, vol. 128, no. 4, pp. 957–971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Norris, S. B. Bordow, G. M. Marshall, P. S. Haber, S. L. Cohn, and M. Haber, “Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma,” The New England Journal of Medicine, vol. 334, no. 4, pp. 231–238, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. G. Assaraf, “Molecular basis of antifolate resistance,” Cancer and Metastasis Reviews, vol. 26, no. 1, pp. 153–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. R. Wilson, D. B. Longley, and P. G. Johnston, “Chemoresistance in solid tumours,” Annals of Oncology, vol. 10, supplement 10, pp. x315–x324, 2006. View at Google Scholar
  29. C. Meijer, N. H. Mulder, H. Timmer-Bosscha, W. J. Sluiter, G. J. Meersma, and E. G. E. De Vries, “Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds,” Cancer Research, vol. 52, no. 24, pp. 6885–6889, 1992. View at Google Scholar · View at Scopus
  30. J. Yeung, M. T. Esposito, A. Gandillet et al., “β-catenin mediates the establishment and drug resistance of MLL leukemic stem cells,” Cancer Cell, vol. 18, no. 6, pp. 606–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Copur, K. Aiba, J. C. Drake, C. J. Allegra, and E. Chu, “Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil,” Biochemical Pharmacology, vol. 49, no. 10, pp. 1419–1426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Bradbury, M. H. Kulke, R. S. Heist et al., “Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes,” Pharmacogenetics and Genomics, vol. 19, no. 8, pp. 613–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Arora, A. Kothandapani, K. Tillison, V. Kalman-Maltese, and S. M. Patrick, “Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells,” DNA Repair, vol. 9, no. 7, pp. 745–753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Shen and J.-P. J. Issa, “Epigenetics in colorectal cancer,” Current Opinion in Gastroenterology, vol. 18, no. 1, pp. 68–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Kim, J. Y. An, S. H. Noh, S. K. Shin, Y. C. Lee, and H. Kim, “High microsatellite instability predicts good prognosis in intestinal-type gastric cancers,” Journal of Gastroenterology and Hepatology, vol. 26, no. 3, pp. 585–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Takahashi, M. Koi, F. Balaguer, C. R. Boland, and A. Goel, “MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin and a poly(ADP-ribose) polymerase inhibitor,” The Journal of Biological Chemistry, vol. 286, no. 14, pp. 12157–12165, 2011. View at Google Scholar
  37. L. P. Martin, T. C. Hamilton, and R. J. Schilder, “Platinum resistance: the role of DNA repair pathways,” Clinical Cancer Research, vol. 14, no. 5, pp. 1291–1295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Ren, B. N. Singh, Q. Huang et al., “DNA hypermethylation as a chemotherapy target,” Cellular Signalling, vol. 23, no. 7, Article ID 213453, pp. 1082–193, 2011. View at Google Scholar
  39. T. Teitz, T. Wei, M. B. Valentine et al., “Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN,” Nature Medicine, vol. 6, no. 5, pp. 529–535, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. N. J. Maclaine and T. R. Hupp, “How phosphorylation controls p53,” Cell Cycle, vol. 10, no. 6, pp. 916–9121, 2011. View at Google Scholar
  41. A. Macchiarulo, N. Giacchè, F. Mancini, E. Puxeddu, F. Moretti, and R. Pellicciari, “Alternative strategies for targeting mouse double minute 2 activity with small molecules: novel patents on the horizon?” Expert Opinion on Therapeutic Patents, vol. 21, no. 3, pp. 287–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. R. Buchakjian and S. Kornbluth, “The engine driving the ship: metabolic steering of cell proliferation and death,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 715–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. R. García-Escudero, A. B. Martínez-Cruz, M. Santos et al., “Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy,” Molecular Cancer, vol. 9, article 193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Mogi and H. Kuwano, “TP53 mutations in nonsmall cell lung cancer,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 583929, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Stilgenbauer and T. Zenz, “Understanding and managing ultra high-risk chronic lymphocytic leukemia,” Hematology, vol. 2010, pp. 481–488, 2010. View at Google Scholar · View at Scopus
  46. F. Al-Ejeh, R. Kumar, A. Wiegmans, S. R. Lakhani, M. P. Brown, and K. K. Khanna, “Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes,” Oncogene, vol. 29, no. 46, pp. 6085–6098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Plati, O. Bucur, and R. Khosravi-Far, “Apoptotic cell signaling in cancer progression and therapy,” Integrative Biology, vol. 3, no. 4, Article ID 213400, pp. 279–296, 2011. View at Google Scholar
  48. Y. Kushnareva and D. D. Newmeyer, “Bioenergetics and cell death,” Annals of the New York Academy of Sciences, vol. 1201, pp. 50–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. A. Allan and P. R. Clarke, “Apoptosis and autophagy: regulation of caspase-9 by phosphorylation,” FEBS Journal, vol. 276, no. 21, pp. 6063–6073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. G. Rolland and B. Conradt, “New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics,” Current Opinion in Cell Biology, vol. 22, no. 6, pp. 852–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Gandhi, D. R. Camidge, M. R. de Oliveira et al., “Phase I study of navitoclax (ABT-263), a novel bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 909–916, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. W. J. Placzek, J. Wei, S. Kitada, D. Zhai, J. C. Reed, and M. Pellecchia, “A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy,” Cell Death and Disease, vol. 1, no. 5, article e40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. U. Testa, “TRAIL/TRAIL-R in hematologic malignancies,” Journal of Cellular Biochemistry, vol. 110, no. 1, pp. 21–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Liu, X. Q. Fu, W. Zhou, H. G. Yu, J. P. Yu, and H. S. Luo, “LY294002 potentiates the anti-cancer effect of oxaliplatin for gastric cancer via death receptor pathway,” World Journal of Gastroenterology, vol. 17, no. 2, pp. 181–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Yu, R. Wang, L. Xu, S. Xie, J. Dong, and Y. Jing, “β-elemene piperazine derivatives induce apoptosis in human leukemia cells through downregulation of c-FLIP and Generation of ROS,” PLoS ONE, vol. 6, no. 1, Article ID e15843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. W. C. Earnshaw, L. M. Martins, and S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates, and functions during apoptosis,” Annual Review of Biochemistry, vol. 68, pp. 383–424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. S. L. Petersen, M. Peyton, J. D. Minna, and X. Wang, “Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 11936–11941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Lanuti, V. Bertagnolo, L. Pierdomenico et al., “Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3,” Cell Research, vol. 19, no. 9, pp. 1079–1089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Gill, C. Dowling, A. J. O'Neill, and R. W. G. Watson, “Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation,” Molecular Cancer, vol. 8, article 39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Avraham and Y. Yarden, “Feedback regulation of EGFR signalling: decision making by early and delayed loops,” Nature Reviews Molecular Cell Biology, vol. 12, no. 2, pp. 104–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Vidal, W. M. de Araujo, A. L. S. Cruz, M. N. Tanaka, J. P. B. Viola, and J. A. Morgado-Díaz, “Lithium reduces tumorigenic potential in response to EGF signaling in human colorectal cancer cells,” International Journal of Oncology, vol. 38, no. 5, pp. 1365–1373, 2011. View at Publisher · View at Google Scholar
  62. Q. Sheng and J. Liu, “The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer,” British Journal of Cancer, vol. 1041, no. 8, pp. 1241–1245, 2011. View at Publisher · View at Google Scholar
  63. G. Metro, G. Finocchiaro, L. Toschi et al., “Epidermal growth factor receptor (EGFR) targeted therapies in non-small cell lung cancer (NSCLC),” Reviews on Recent Clinical Trials, vol. 1, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. S. E. Al-Batran, M. Ruppert, and E. Jäger, “Trastuzumab plus chemotherapy in gastric cancer overexpressing HER-2 and EGFR: a case report,” Onkologie, vol. 34, no. 1-2, pp. 42–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. E. Chuang, P. Y. Yeh, Y. S. Lu et al., “Basal levels and patterns of anticancer drug-induced activation of nuclear factor-κB (NF-κB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells,” Biochemical Pharmacology, vol. 63, no. 9, pp. 1709–1716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Olmos, J. J. Brosens, and E. W. F. Lam, “Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer,” Drug Resistance Updates, vol. 14, no. 1, pp. 35–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Peck, C. Y. Chen, K. K. Ho et al., “SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2,” Molecular Cancer Therapeutics, vol. 9, no. 4, pp. 844–855, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Lara, A. Mai, V. Calvanese et al., “Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect,” Oncogene, vol. 28, no. 6, pp. 781–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. K. W. Kang, M. K. Chun, O. Kim et al., “Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy,” Nanomedicine, vol. 6, no. 2, pp. 210–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Aryal, C. M. J. Hu, and L. Zhang, “Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery,” ACS Nano, vol. 4, no. 1, pp. 251–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. E. B. Dickerson, W. H. Blackburn, M. H. Smith, L. B. Kapa, L. A. Lyon, and J. F. McDonald, “Chemosensitization of cancer cells by siRNA using targeted nanogel delivery,” BMC Cancer, vol. 10, article 10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Cheng, J. Wang, B. Chen et al., “A promising strategy for overcoming MDR in tumor by magnetic iron oxide nanoparticles co-loaded with daunorubicin and 5-bromotetrandrin,” International Journal of Nanomedicine, vol. 6, pp. 2123–2131, 2011. View at Google Scholar
  73. J. Klostergaard and C. E. Seeney, “Magnetic nanovectors for drug delivery,” Nanomedicine, vol. 73, supplement 1, pp. S37–S50, 2012. View at Google Scholar
  74. T. Zhang, L. Qian, M. Tang et al., “Evaluation on cytotoxicity and genotoxicity of the L-glutamic acid coated iron oxide nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 3, pp. 2866–2873, 2012. View at Google Scholar
  75. V. P. Torchilin, “Micellar nanocarriers: pharmaceutical perspectives,” Pharmaceutical Research, vol. 24, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Kiziltepe, J. D. Ashley, J. F. Stefanick et al., “Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo,” Blood Cancer Journal, vol. 2, no. 4, article e64, 2012. View at Google Scholar
  77. S. B. Lim, A. Banerjee, and H. Onyüksel, “Improvement of drug safety by the use of lipid-based nanocarriers,” Journal of Controlled Release, vol. 163, no. 1, pp. 34–45, 2012. View at Google Scholar
  78. R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chemical Society Reviews, vol. 41, no. 7, pp. 2943–2970, 2012. View at Google Scholar
  79. L. Vigderman and E. R. Zubarev, “Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules,” Advanced Drug Delivery Reviews. In press.
  80. C. Di Guglielmo, J. De Lapuente, C. Porredon, D. Ramos-López, J. Sendra, and M. Borràs, “In vitro safety toxicology data for evaluation of gold nanoparticles-chronic cytotoxicity, genotoxicity and uptake,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 8, pp. 6185–6191, 2012. View at Google Scholar
  81. J.-M Li, Y.-Y Wang, M.-X Zhao et al., “Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking,” Biomaterials, vol. 33, no. 9, pp. 2780–2790, 2012. View at Google Scholar
  82. C. E. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, “Quantum dots as a platform for nanoparticle drug delivery vehicle design,” Advanced Drug Delivery Reviews. In press.
  83. N. M. Zaki, A. Nasti, and N. Tirelli, “Nanocarriers for cytoplasmic delivery: cellular uptake and intracellular fate of chitosan and hyaluronic acid-coated chitosan nanoparticles in a phagocytic cell model,” Macromolecular Bioscience, vol. 11, no. 12, pp. 1747–1760, 2011. View at Google Scholar
  84. A. Nasti, N. M. Zaki, P. De Leonardis et al., “Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation,” Pharmaceutical Research, vol. 26, no. 8, pp. 1918–1930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. V. Mamaeva, C. Sahlgren, and M. Lindén, “Mesoporous silica nanoparticles in medicine-Recent advances,” Advanced Drug Delivery Reviews. In press.
  86. T. Asefa and Z. Tao, “Biocompatibility of mesoporous silica nanoparticles,” Chemical Research in Toxicology. In press. View at Publisher · View at Google Scholar
  87. C. Alabi, A. Vegas, and D. Anderson, “Attacking the genome: emerging siRNA nanocarriers from concept to clinic,” Current Opinion in Pharmacology, vol. 12, no. 4, pp. 427–433, 2012. View at Google Scholar
  88. K. A. Howard, “Delivery of RNA interference therapeutics using polycation-based nanoparticles,” Advanced Drug Delivery Reviews, vol. 61, no. 9, pp. 710–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments,” Clinical Pharmacology & Therapeutics, vol. 83, no. 5, pp. 761–769, 2008. View at Google Scholar
  90. A. Z. Wang, F. Gu, L. Zhang et al., “Biofunctionalized targeted nanoparticles for therapeutic applications,” Expert Opinion on Biological Therapy, vol. 8, no. 8, pp. 1063–1070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. C.-M. J. Hu, S. Kaushal, H. S. T. Cao et al., “Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells,” Molecular Pharmaceutics, vol. 7, no. 3, pp. 914–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. C.-M. J. Hu and L. Zhang, “Nanoparticle-based combination therapy toward overcoming drug resistance in cancer,” Biochemical Pharmacology, vol. 83, no. 8, pp. 1104–1111, 2012. View at Google Scholar
  93. A. Shapira, Y. D. Livney, H. J. Broxterman, and Y. G. Assaraf, “Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance,” Drug Resistance Updates, vol. 14, no. 3, pp. 150–163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Dufort, L. Sancey, and J.-L Coll, “Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution,” Advanced Drug Delivery Reviews, vol. 64, no. 2, pp. 179–189, 2012. View at Google Scholar
  95. A. Bitar, N. M. Ahmad, H. Fessi, and A. Elaissari, “Silica-based nanoparticles for biomedical applications,” Drug Discovery Today, vol. 17, no. 19-20, pp. 1147–1154, 2012. View at Google Scholar
  96. V. Saxena and M. D. Hussain, “Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer,” International Journal of Nanomedicine, vol. 7, pp. 713–721, 2012. View at Google Scholar
  97. G. Navarro, R. R. Sawant, S. Biswas et al., “P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells,” Nanomedicine, vol. 7, no. 1, pp. 65–78, 2012. View at Google Scholar
  98. Y. Jin, S. Liu, B. Yu et al., “Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: a novel oligonucleotide—based therapeutic strategy in acute myeloid leukemia,” Molecular Pharmaceutics, vol. 7, no. 1, pp. 196–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. A. D. Steg, A. A. Katre, B. Goodman et al., “Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer,” Clinical Cancer Research, vol. 17, no. 17, pp. 5674–5685, 2011. View at Google Scholar
  100. O. Osman, L. F. Zanini, M. Frénéa-Robin et al., “Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources,” Biomed Microdevices, vol. 14, no. 5, pp. 947–954, 2012. View at Google Scholar
  101. A. Singh, F. Dilnawaz, and S. K. Sahoo, “Long circulating lectin conjugated paclitaxel loaded magnetic nanoparticles: a new theranostic avenue for leukemia therapy,” PLoS ONE, vol. 6, no. 11, Article ID e26803, 2011. View at Google Scholar
  102. E. C. Dreaden, B. E. Gryder, L. A. Austin et al., “Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells,” Bioconjugate chemistry, vol. 23, no. 8, pp. 1507–1512, 2012. View at Publisher · View at Google Scholar
  103. C. Tomuleasa, O. Soritau, A. Orza et al., “Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells,” Journal of Gastrointestinal and Liver Diseases, vol. 21, no. 2, pp. 187–196, 2012. View at Google Scholar
  104. W. Punfa, S. Yodkeeree, P. Pitchakarn, C. Ampasavate, and P. Limtrakul, “Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells,” Acta Pharmacologica Sinica, vol. 33, no. 6, pp. 823–831, 2012. View at Google Scholar
  105. D. Pramanik, N. R. Campbell, S. Das et al., “A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy,” Oncotarget, vol. 3, no. 6, pp. 640–650, 2012. View at Google Scholar
  106. M. Das and S. K. Sahoo, “Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance,” PLoS ONE, vol. 7, no. 3, Article ID e32920, 2012. View at Google Scholar
  107. B. Li, H. Xu, Z. Li et al., “Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies,” International Journal of Nanomedicine, vol. 7, pp. 187–197, 2012. View at Google Scholar
  108. L. Milane, Z. Duan, and M. Amiji, “Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer,” PLoS ONE, vol. 6, no. 9, Article ID e24075., 2011. View at Google Scholar
  109. J. Shen, Q. Yin, L. Chen, Z. Zhang, and Y. Li, “Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer,” Biomaterials, vol. 33, no. 33, pp. 8613–8624, 2012. View at Google Scholar
  110. H. B. Nair, S. Huffman, P. Veerapaneni et al., “Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 5, pp. 3789–3799, 2011. View at Google Scholar
  111. Y. Chen, S. R. Bathula, J. Li, and L. Huang, “Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22639–22650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. I.-P. Huang, S.-P. Sun, S. H. Cheng et al., “Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance,” Molecular Cancer Therapeutics, vol. 10, no. 5, pp. 761–769, 2011. View at Publisher · View at Google Scholar · View at Scopus