Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2013, Article ID 374252, 19 pages
http://dx.doi.org/10.1155/2013/374252
Review Article

Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers

Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy

Received 2 December 2012; Accepted 6 February 2013

Academic Editor: Tamer Elbayoumi

Copyright © 2013 Stefano Salmaso and Paolo Caliceti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Research, vol. 46, no. 12, part 1, pp. 6387–6392, 1986. View at Google Scholar · View at Scopus
  2. K. Greish, J. Fang, T. Inutsuka, A. Nagamitsu, and H. Maeda, “Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting,” Clinical Pharmacokinetics, vol. 42, no. 13, pp. 1089–1105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Elsevier, Academic Press, Amsterdam, The Netherlands, 2nd edition, 2004.
  4. M. M. Frank and L. F. Fries, “The role of complement in inflammation and phagocytosis,” Immunology Today, vol. 12, no. 9, pp. 322–326, 1991. View at Google Scholar · View at Scopus
  5. L. E. van Vlerken, T. K. Vyas, and M. M. Amiji, “Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery,” Pharmaceutical Research, vol. 24, no. 8, pp. 1405–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Kinoshita, “Biology of complement: the overture,” Immunology Today, vol. 12, no. 9, pp. 291–295, 1991. View at Google Scholar · View at Scopus
  7. A. Sahu and J. D. Lambris, “Structure and biology of complement protein C3, a connecting link between innate and acquired immunity,” Immunological Reviews, vol. 180, pp. 35–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Markiewski, B. Nilsson, K. Nilsson Ekdahl, T. E. Mollnes, and J. D. Lambris, “Complement and coagulation: strangers or partners in crime?” Trends in Immunology, vol. 28, no. 4, pp. 184–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Nilsson, K. N. Ekdahl, T. E. Mollnes, and J. D. Lambris, “The role of complement in biomaterial-induced inflammation,” Molecular Immunology, vol. 44, no. 1–3, pp. 82–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Ricklin and J. D. Lambris, “Complement-targeted therapeutics,” Nature Biotechnology, vol. 25, no. 11, pp. 1265–1275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Gros, F. J. Milder, and B. J. C. Janssen, “Complement driven by conformational changes,” Nature Reviews Immunology, vol. 8, no. 1, pp. 48–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Vonarbourg, C. Passirani, P. Saulnier, and J. P. Benoit, “Parameters influencing the stealthiness of colloidal drug delivery systems,” Biomaterials, vol. 27, no. 24, pp. 4356–4373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Carstensen, R. H. Muller, and B. W. Muller, “Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake,” Clinical Nutrition, vol. 11, no. 5, pp. 289–297, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. M. E. Norman, P. Williams, and L. Illum, “Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres,” Biomaterials, vol. 13, no. 12, pp. 841–849, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. R. H. Müller, K. H. Wallis, S. D. Tröster, and J. Kreuter, “In vitro characterization of poly(methyl-methaerylate) nanoparticles and correlation to their in vivo fate,” Journal of Controlled Release, vol. 20, no. 3, pp. 237–246, 1992. View at Publisher · View at Google Scholar
  16. M. Roser, D. Fischer, and T. Kissel, “Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 46, no. 3, pp. 255–263, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Moghimi, I. S. Muir, L. Illum, S. S. Davis, and V. Kolb-Bachofen, “Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum,” Biochimica et Biophysica Acta, vol. 1179, no. 2, pp. 157–165, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Long-circulating and target-specific nanoparticles: theory to practice,” Pharmacological Reviews, vol. 53, no. 2, pp. 283–318, 2001. View at Google Scholar · View at Scopus
  19. X. Yan, G. L. Scherphof, and J. A. A. M. Kamps, “Liposome opsonization,” Journal of Liposome Research, vol. 15, no. 1-2, pp. 109–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. M. Allen, “Long-circulating (sterically stabilized) liposomes for targeted drug delivery,” Trends in Pharmacological Sciences, vol. 15, no. 7, pp. 215–220, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Woodle and G. Storm, Long Circulating Liposomes: Old Drugs, New Therapeutics, Springer, New York, NY, USA, 1998.
  22. D. E. Owens III and N. A. Peppas, “Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles,” International Journal of Pharmaceutics, vol. 307, no. 1, pp. 93–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Storm, S. O. Belliot, T. Daemen, and D. D. Lasic, “Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system,” Advanced Drug Delivery Reviews, vol. 17, no. 1, pp. 31–48, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. A. E. Stuart, “Phagocytic engulfment and cell adhesiveness as cellular surface phenomena,” Journal of Clinical Pathology, vol. 30, no. 6, article 592, 1977. View at Google Scholar
  25. S. I. Jeon and J. D. Andrade, “Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size,” Journal of Colloid and Interface Science, vol. 142, no. 1, pp. 159–166, 1991. View at Google Scholar · View at Scopus
  26. L. Illum, N. W. Thomas, and S. S. Davis, “Effect of a selected suppression of the reticuloendothelial system on the distribution of model carrier particles,” Journal of Pharmaceutical Sciences, vol. 75, no. 1, pp. 16–22, 1986. View at Google Scholar · View at Scopus
  27. Y. Tabata and Y. Ikada, “Phagocytosis of polymer microspheres by macrophages,” Advances in Polymer Science, vol. 94, pp. 106–141, 1990. View at Google Scholar · View at Scopus
  28. A. Gabizon and D. Papahadjopoulos, “The role of surface charge and hydrophilic groups on liposome clearance in vivo,” Biochimica et Biophysica Acta, vol. 1103, no. 1, pp. 94–100, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. M. T. Peracchia, S. Harnisch, H. Pinto-Alphandary et al., “Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles,” Biomaterials, vol. 20, no. 14, pp. 1269–1275, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Neal, S. Stolnik, E. Schacht et al., “In vitro displacement by rat serum of adsorbed radiolabeled poloxamer and poloxamine copolymers from model and biodegradable nanospheres,” Journal of Pharmaceutical Sciences, vol. 87, no. 10, pp. 1242–1248, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. G. R. Harper, M. C. Davies, S. S. Davis, T. F. Tadros, D. C. Taylor, and M. P. J. A. I. Waters, “Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro,” Biomaterials, vol. 12, no. 7, pp. 695–700, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Bazile, C. Prud'Homme, M. T. Bassoullet, M. Marlard, G. Spenlehauer, and M. Veillard, “Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system,” Journal of Pharmaceutical Sciences, vol. 84, no. 4, pp. 493–498, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Gref, M. Lück, P. Quellec et al., “‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption,” Colloids and Surfaces B, vol. 18, no. 3-4, pp. 301–313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. T. Peracchia, E. Fattal, D. Desmaële et al., “Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting,” Journal of Controlled Release, vol. 60, no. 1, pp. 121–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Bergström, E. Osterberg, K. Holmberg et al., “Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection,” Journal of Biomaterials Science (Polymer Edition), vol. 6, no. 2, pp. 123–132, 1994. View at Google Scholar · View at Scopus
  36. S. E. Dunn, A. Brindley, S. S. Davis, M. C. Davies, and L. Illum, “Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution,” Pharmaceutical Research, vol. 11, no. 7, pp. 1016–1022, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Yokoyama, “Block copolymers as drug carriers,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 9, no. 3-4, pp. 213–248, 1992. View at Google Scholar · View at Scopus
  38. N. Kumar, M. N. V. Ravikumar, and A. J. Domb, “Biodegradable block copolymers,” Advanced Drug Delivery Reviews, vol. 53, no. 1, pp. 23–44, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. L. Adams, A. Lavasanifar, and G. S. Kwon, “Amphiphilic block copolymers for drug delivery,” Journal of Pharmaceutical Sciences, vol. 92, no. 7, pp. 1343–1355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Vandorpe, E. Schacht, S. Dunn et al., “Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer,” Biomaterials, vol. 18, no. 17, pp. 1147–1152, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Stolnik, S. E. Dunn, M. C. Garnett et al., “Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers,” Pharmaceutical Research, vol. 11, no. 12, pp. 1800–1808, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. M. C. Woodle and D. D. Lasic, “Sterically stabilized liposomes,” Biochimica et Biophysica Acta, vol. 1113, no. 2, pp. 171–199, 1992. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Kostarelos, T. F. Tadros, and P. F. Luckham, “Physical conjugation of (Tri-) block copolymers to liposomes toward the construction of sterically stabilized vesicle systems,” Langmuir, vol. 15, no. 2, pp. 369–376, 1999. View at Google Scholar · View at Scopus
  44. S. M. Moghimi and A. C. Hunter, “Poloxamers and poloxamines in nanoparticle engineering and experimental medicine,” Trends in Biotechnology, vol. 18, no. 10, pp. 412–420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. M. E. Norman, P. Williams, and L. Illum, “Influence of block copolymers on the adsorption of plasma proteins to microspheres,” Biomaterials, vol. 14, no. 3, pp. 193–202, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Chang, W. L. Chu, W. Y. Chen et al., “A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces,” Journal of Biomedical Materials Research A, vol. 93, no. 1, pp. 400–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Lee, P. A. Martic, and J. S. Tan, “Protein adsorption on pluronic copolymer-coated polystyrene particles,” Journal of Colloid and Interface Science, vol. 131, no. 1, pp. 252–266, 1989. View at Google Scholar · View at Scopus
  48. D. B. Shenoy and M. M. Amiji, “Poly(ethylene oxide)-modified poly(ε-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer,” International Journal of Pharmaceutics, vol. 293, no. 1-2, pp. 261–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Weissleder, A. Bogdanov, E. A. Neuwelt, and M. Papisov, “Long-circulating iron oxides for MR imaging,” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 321–334, 1995. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Pain, P. K. Das, P. Ghosh, and B. K. Bachhawat, “Increased circulatory half-life of liposomes after conjunction with dextran,” Journal of Biosciences, vol. 6, no. 6, pp. 811–816, 1984. View at Google Scholar · View at Scopus
  51. H. H. Bengele, S. Palmacci, J. Rogers, C. W. Jung, J. Crenshaw, and L. Josphson, “Biodistribution of an ultrasmall superparamagnetic iron oxide colloid, BMS 180549, by different routes of administration,” Magnetic Resonance Imaging, vol. 12, no. 3, pp. 433–442, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Moghimi and B. Bonnemain, “Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography,” Advanced Drug Delivery Reviews, vol. 37, no. 1–3, pp. 295–312, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. M. K. Pangburn and H. J. Muller-Eberhard, “Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 5, pp. 2416–2420, 1978. View at Google Scholar · View at Scopus
  54. M. D. Kazatchkine, D. T. Fearon, and K. F. Austen, “Human alternative complement pathway: membrane-associated sialic acid regulates the competition between B and β1H for cell-bound C3b,” Journal of Immunology, vol. 122, no. 1, pp. 75–81, 1979. View at Google Scholar · View at Scopus
  55. D. T. Fearon and K. F. Austen, “Activation of the alternative complement pathway due to resistance of zymosan bound amplification convertase to endogenous regulatory mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 4, pp. 1683–1687, 1977. View at Google Scholar · View at Scopus
  56. A. Surolia and B. K. Bachhawat, “Monosialoganglioside liposome entrapped enzyme uptake by hepatic cells,” Biochimica et Biophysica Acta, vol. 497, no. 3, pp. 760–765, 1977. View at Google Scholar · View at Scopus
  57. T. M. Allen and A. Chonn, “Large unilamellar liposomes with low uptake into the reticuloendothelial system,” FEBS Letters, vol. 223, no. 1, pp. 42–46, 1987. View at Google Scholar · View at Scopus
  58. A. Gabizon and D. Papahadjopoulos, “Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 18, pp. 6949–6953, 1988. View at Google Scholar · View at Scopus
  59. T. M. Allen, C. Hansen, and J. Rutledge, “Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues,” Biochimica et Biophysica Acta, vol. 981, no. 1, pp. 27–35, 1989. View at Google Scholar · View at Scopus
  60. A. Chonn, S. C. Semple, and P. R. Cullis, “Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes,” The Journal of Biological Chemistry, vol. 267, no. 26, pp. 18759–18765, 1992. View at Google Scholar · View at Scopus
  61. D. Liu, Y. K. Song, and F. Liu, “Antibody dependent, complement mediated liver uptake of liposomes containing GM1,” Pharmaceutical Research, vol. 12, no. 11, pp. 1775–1780, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. S. Park and L. Huang, “Effect of chemically modified G(M1) and neoglycolipid analogs of G(M1) on liposome circulation time: evidence supporting the dysopsonin hypothesis,” Biochimica et Biophysica Acta, vol. 1166, no. 1, pp. 105–114, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Yamauchi, H. Kikuchi, K. Yachi, M. Sawada, M. Tomikawa, and S. Hirota, “Effects of glycophorin and ganglioside GM3 on the blood circulation and tissue distribution of liposomes in rats,” International Journal of Pharmaceutics, vol. 90, no. 1, pp. 73–79, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Yamauchi, T. Yano, T. Kato et al., “Effects of sialic acid derivative on long circulation time and tumor concentration of liposomes,” International Journal of Pharmaceutics, vol. 113, no. 2, pp. 141–148, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. J. C. Olivier, C. Vauthier, M. Taverna, F. Puisieux, D. Ferrier, and P. Couvreur, “Stability of orosomucoid-coated polyisobutylcyanoacrylate nanoparticles in the presence of serum,” Journal of Controlled Release, vol. 40, no. 3, pp. 157–168, 1996. View at Publisher · View at Google Scholar · View at Scopus
  66. M. T. Michalek, E. G. Bremer, and C. Mold, “Effect of gangliosides on activation of the alternative pathway of human complement,” Journal of Immunology, vol. 140, no. 5, pp. 1581–1587, 1988. View at Google Scholar · View at Scopus
  67. T. M. Allen, “The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system,” Advanced Drug Delivery Reviews, vol. 13, no. 3, pp. 285–309, 1994. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Vermette and L. Meagher, “Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms,” Colloids and Surfaces B, vol. 28, no. 2-3, pp. 153–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Chen, S. Chen, S. Jiang et al., “Study of zwitterionic sulfopropylbetaine containing reactive siloxanes for application in antibacterial materials,” Colloids and Surfaces B, vol. 85, no. 2, pp. 323–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Jiang and Z. Cao, “Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications,” Advanced Materials, vol. 22, no. 9, pp. 920–932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Z. Cao, N. Brault, H. Xue, A. Keefe, and S. Jiang, “Manipulating sticky and non-sticky properties in a single material,” Angewandte Chemie—International Edition, vol. 50, no. 27, pp. 6102–6104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Massenburg and B. R. Lentz, “Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles,” Biochemistry, vol. 32, no. 35, pp. 9172–9180, 1993. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Sáez, A. Alonso, A. Villena, and F. M. Goñi, “Detergent-like properties of polyethyleneglycols in relation to model membranes,” FEBS Letters, vol. 137, no. 2, pp. 323–326, 1982. View at Google Scholar · View at Scopus
  74. Y. He, J. Hower, S. Chen, M. T. Bernards, Y. Chang, and S. Jiang, “Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water,” Langmuir, vol. 24, no. 18, pp. 10358–10364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. Cao, L. Zhang, and S. Jiang, “Superhydrophilic zwitterionic polymers stabilize liposomes,” Langmuir, vol. 28, no. 31, pp. 11625–11632, 2012. View at Publisher · View at Google Scholar
  76. Z. G. Estephan, J. A. Jaber, and J. B. Schlenoff, “Zwitterion-stabilized silica nanoparticles: toward nonstick nano,” Langmuir, vol. 26, no. 22, pp. 16884–16889, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Jia, Z. Cao, H. Xue, Y. Xu, and S. Jiang, “Novel zwitterionic-polymer-coated silica nanoparticles,” Langmuir, vol. 25, no. 5, pp. 3196–3199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. W. Yang, L. Zhang, S. Wang, A. D. White, and S. Jiang, “Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum,” Biomaterials, vol. 30, no. 29, pp. 5617–5621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Zhang, H. Xue, C. Gao et al., “Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages,” Biomaterials, vol. 31, no. 25, pp. 6582–6588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Cao, Q. Yu, H. Xue, G. Cheng, and S. Jiang, “Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks,” Angewandte Chemie—International Edition, vol. 49, no. 22, pp. 3771–3776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Cheng, L. Mi, Z. Cao et al., “Functionalizable and ultrastable zwitterionic nanogels,” Langmuir, vol. 26, no. 10, pp. 6883–6886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Zhang, H. Xue, Z. Cao, A. Keefe, J. Wang, and S. Jiang, “Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance,” Biomaterials, vol. 32, no. 20, pp. 4604–4608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Ladd, Z. Zhang, S. Chen, J. C. Hower, and S. Jiang, “Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma,” Biomacromolecules, vol. 9, no. 5, pp. 1357–1361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Siegers, M. Biesalski, and R. Haag, “Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins,” Chemistry, vol. 10, no. 11, pp. 2831–2838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Calderón, M. A. Quadir, S. K. Sharma, and R. Haag, “Dendritic polyglycerols for biomedical applications,” Advanced Materials, vol. 22, no. 2, pp. 190–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Maruyama, S. Okuizumi, O. Ishida, H. Yamauchi, H. Kikuchi, and M. Iwatsuru, “Phosphatidyl polyglycerols prolong liposome circulation in vivo,” International Journal of Pharmaceutics, vol. 111, no. 1, pp. 103–107, 1994. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Y. J. Yeh, R. K. Kainthan, Y. Zou, M. Chiao, and J. N. Kizhakkedathu, “Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s,” Langmuir, vol. 24, no. 9, pp. 4907–4916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. V. P. Torchilin, M. I. Shtilman, V. S. Trubetskoy, K. Whiteman, and A. M. Milstein, “Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo,” Biochimica et Biophysica Acta, vol. 1195, no. 1, pp. 181–184, 1994. View at Publisher · View at Google Scholar · View at Scopus
  89. V. P. Torchilin and V. S. Trubetskoy, “Which polymers can make nanoparticulate drug carriers long-circulating?” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 141–155, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. V. P. Torchilin, V. S. Trubetskoy, K. R. Whiteman, P. Caliceti, P. Ferruti, and F. M. Veronese, “New synthetic amphiphilic polymers for steric protection of liposomes in vivo,” Journal of Pharmaceutical Sciences, vol. 84, no. 9, pp. 1049–1053, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Feldman, “Polymers in solution. Their modelling and structure, by J. des Cloizeaux and G. Jannink. Oxford university press, New York, 1991, 944 pp.: $195.00,” Journal of Polymer Science A, vol. 30, no. 2, pp. 343–343. View at Publisher · View at Google Scholar
  92. H. Takeuchi, H. Kojima, H. Yamamoto, and Y. Kawashima, “Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats,” Journal of Controlled Release, vol. 75, no. 1-2, pp. 83–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Illum, L. O. Jacobsen, and R. H. Muller, “Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages,” Biomaterials, vol. 8, no. 2, pp. 113–117, 1987. View at Google Scholar · View at Scopus
  94. J. C. Leroux, F. de Jaeghere, B. Anner, E. Doelker, and R. Gurny, “An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes,” Life Sciences, vol. 57, no. 7, pp. 695–703, 1995. View at Publisher · View at Google Scholar · View at Scopus
  95. W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, “Protein adsorption to poly(ethylene oxide) surfaces,” Journal of Biomedical Materials Research, vol. 25, no. 12, pp. 1547–1562, 1991. View at Google Scholar · View at Scopus
  96. F. K. Bedu-Addo and L. Huang, “Interaction of PEG-phospholipid conjugates with phospholipid: implications in liposomal drug delivery,” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 235–247, 1995. View at Publisher · View at Google Scholar · View at Scopus
  97. V. C. F. Mosqueira, P. Legrand, A. Gulik et al., “Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules,” Biomaterials, vol. 22, no. 22, pp. 2967–2979, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Vittaz, D. Bazile, G. Spenlehauer et al., “Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators,” Biomaterials, vol. 17, no. 16, pp. 1575–1581, 1996. View at Publisher · View at Google Scholar · View at Scopus
  99. L. D. Unsworth, H. Sheardown, and J. L. Brash, “Protein-resistant polyethylene oxide-grafted surfaces: chain density-dependent multiple mechanisms of action,” Langmuir, vol. 24, no. 5, pp. 1924–1929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Passirani and J. P. Benoit, “Complement activation by injectable colloidal drug carriers,” in Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids, CRC Press, New York, NY, USA, 2004. View at Google Scholar
  101. A. Béduneau, P. Saulnier, N. Anton et al., “Pegylated nanocapsules produced by an organic solvent-free method: evaluation of their stealth properties,” Pharmaceutical Research, vol. 23, no. 9, pp. 2190–2199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. S. M. Moghimi, “Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers,” Biochimica et Biophysica Acta, vol. 1590, no. 1–3, pp. 131–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. P. S. Uster, “Liposomes as drug carriers: recent trends and progress. Edited by Gregory Gregoriadis. John Wiley: Chichester, UK. 1988. xxvi + 885 pp. 22×16 cm. ISBN 0-471-91654-4. Price not given,” Journal of Pharmaceutical Sciences, vol. 78, no. 8, pp. 693–693, 1989. View at Publisher · View at Google Scholar
  104. J. Damen, J. Regts, and G. Scherphof, “Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition,” Biochimica et Biophysica Acta, vol. 665, no. 3, pp. 538–545, 1981. View at Google Scholar · View at Scopus
  105. M. I. Papisov, “Theoretical considerations of RES-avoiding liposomes: molecular mechanics and chemistry of liposome interactions,” Advanced Drug Delivery Reviews, vol. 32, no. 1-2, pp. 119–138, 1998. View at Publisher · View at Google Scholar · View at Scopus
  106. P. M. Claesson, E. Blomberg, J. C. Fröberg, T. Nylander, and T. Arnebrant, “Protein interactions at solid surfaces,” Advances in Colloid and Interface Science, vol. 57, no. C, pp. 161–227, 1995. View at Google Scholar · View at Scopus
  107. A. K. Kenworthy, S. A. Simon, and T. J. McIntosh, “Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol),” Biophysical Journal, vol. 68, no. 5, pp. 1903–1920, 1995. View at Google Scholar · View at Scopus
  108. V. P. Torchilin, “Polymer-coated long-circulating microparticulate pharmaceuticals,” Journal of Microencapsulation, vol. 15, no. 1, pp. 1–19, 1998. View at Google Scholar · View at Scopus
  109. S. D. Li and L. Huang, “Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting,” Journal of Controlled Release, vol. 145, no. 3, pp. 178–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Rudt and R. H. Muller, “In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. III. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution,” European Journal of Pharmaceutical Sciences, vol. 1, no. 1, pp. 31–39, 1993. View at Google Scholar · View at Scopus
  111. S. Stolnik, L. Illum, and S. S. Davis, “Long circulating microparticulate drug carriers,” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 195–214, 1995. View at Publisher · View at Google Scholar · View at Scopus
  112. P. G. de Gennes, “Polymer solutions near an interface. 1. Adsorption and depletion layers,” Macromolecules, vol. 14, no. 6, pp. 1637–1644, 1981. View at Google Scholar · View at Scopus
  113. S. W. Shalaby and A. C. S. Meeting, Polymers As Biomaterials, Plenum Press, New York, NY, USA, 1984.
  114. C. Lemarchand, R. Gref, C. Passirani et al., “Influence of polysaccharide coating on the interactions of nanoparticles with biological systems,” Biomaterials, vol. 27, no. 1, pp. 108–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Sant, S. Poulin, and P. Hildgen, “Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles,” Journal of Biomedical Materials Research A, vol. 87, no. 4, pp. 885–895, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Rieger, C. Passirani, J. P. Benoit, K. van Butsele, R. Jérôme, and C. Jérôme, “Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles,” Advanced Functional Materials, vol. 16, no. 11, pp. 1506–1514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre, “Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles,” Life Sciences, vol. 61, no. 7, pp. 749–761, 1997. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Blunk, D. F. Hochstrasser, J. C. Sanchez, B. W. Muller, and R. H. Muller, “Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis,” Electrophoresis, vol. 14, no. 12, pp. 1382–1387, 1993. View at Google Scholar · View at Scopus
  119. R. Gref, A. Domb, P. Quellec et al., “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres,” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 215–233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  120. S. C. Semple, A. Chonn, and P. R. Cullis, “Influence of cholesterol on the association of plasma proteins with liposomes,” Biochemistry, vol. 35, no. 8, pp. 2521–2525, 1996. View at Publisher · View at Google Scholar · View at Scopus
  121. S. C. Semple, A. Chonn, and P. R. Cullis, “Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo,” Advanced Drug Delivery Reviews, vol. 32, no. 1-2, pp. 3–17, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. M. E. Price, R. M. Cornelius, and J. L. Brash, “Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma,” Biochimica et Biophysica Acta, vol. 1512, no. 2, pp. 191–205, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Stolnik, B. Daudali, A. Arien et al., “The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers,” Biochimica et Biophysica Acta, vol. 1514, no. 2, pp. 261–279, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. S. M. Moghimi and J. Szebeni, “Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties,” Progress in Lipid Research, vol. 42, no. 6, pp. 463–478, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. P. Laverman, A. H. Brouwers, E. T. M. Dams et al., “Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose,” Journal of Pharmacology and Experimental Therapeutics, vol. 293, no. 3, pp. 996–1001, 2000. View at Google Scholar · View at Scopus
  126. P. Laverman, O. C. Boerman, W. J. G. Oyen, F. H. M. Corstens, and G. Storm, “In vivo applications of PEG liposomes: unexpected observations,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 18, no. 6, pp. 551–566, 2001. View at Google Scholar · View at Scopus
  127. P. Laverman, M. G. Carstens, O. C. Boerman et al., “Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection,” Journal of Pharmacology and Experimental Therapeutics, vol. 298, no. 2, pp. 607–612, 2001. View at Google Scholar · View at Scopus
  128. T. M. Allen, C. Hansen, F. Martin, C. Redemann, and A. F. Yau-Young, “Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo,” Biochimica et Biophysica Acta, vol. 1066, no. 1, pp. 29–36, 1991. View at Publisher · View at Google Scholar · View at Scopus
  129. D. R. Utkhede and C. P. Tilcock, “Effect of lipid dose on the biodistribution and blood pool clearance kinetics of PEG-modified technetium-labeled lipid vesicles,” Journal of Liposome Research, vol. 8, no. 3, pp. 381–390, 1998. View at Google Scholar · View at Scopus
  130. M. C. Woodle, K. K. Matthay, M. S. Newman et al., “Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes,” Biochimica et Biophysica Acta, vol. 1105, no. 2, pp. 193–200, 1992. View at Publisher · View at Google Scholar · View at Scopus
  131. J. T. P. Derksen, H. W. M. Morselt, D. Kalicharan, C. E. Hulstaert, and G. L. Scherphof, “Interaction of immunoglobulin-coupled liposomes with rat liver macrophages in vitro,” Experimental Cell Research, vol. 168, no. 1, pp. 105–115, 1987. View at Google Scholar · View at Scopus
  132. U. R. Nilsson, K. E. Storm, H. Elwing, and B. Nilsson, “Conformation epitopes of C3 reflecting its mode of binding to an artificial polymer surface,” Molecular Immunology, vol. 30, no. 3, pp. 211–219, 1993. View at Publisher · View at Google Scholar · View at Scopus
  133. A. J. Bradley, D. V. Devine, S. M. Ansell, J. Janzen, and D. E. Brooks, “Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids,” Archives of Biochemistry and Biophysics, vol. 357, no. 2, pp. 185–194, 1998. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Szebeni, L. Baranyi, S. Savay et al., “The role of complement activation in hypersensitivity to pegylated liposomal doxorubicin (doxil),” Journal of Liposome Research, vol. 10, no. 4, pp. 467–481, 2000. View at Google Scholar · View at Scopus
  135. S. M. Moghimi, I. Hamad, T. L. Andresen, K. Jørgensen, and J. Szebeni, “Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production,” FASEB Journal, vol. 20, no. 14, pp. 2591–2593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Szebeni, L. Baranyi, S. Sávay et al., “Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in liposome-induced abnormalities in ECG and heart function,” The American Journal of Physiology, vol. 290, no. 3, pp. H1050–H1058, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. D. R. Utkhede and C. P. Tilcock, “Studies upon the toxicity of polyethylene glycol coated lipid vesicles: acute hemodynamic effects, pyrogenicity and complement activation,” Journal of Liposome Research, vol. 8, no. 4, pp. 537–550, 1998. View at Google Scholar · View at Scopus
  138. J. K. Gbadamosi, A. C. Hunter, and S. M. Moghimi, “PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance,” FEBS Letters, vol. 532, no. 3, pp. 338–344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  139. A. J. Bradley, S. T. Test, K. L. Murad, J. Mitsuyoshi, and M. D. Scott, “Interactions of IgM ABO antibodies and complement with methoxy-PEG-modified human RBCs,” Transfusion, vol. 41, no. 10, pp. 1225–1233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Taguchi, Y. Urata, M. Anraku et al., “Hemoglobin vesicles, polyethylene glycol (PEG)ylated liposomes developed as a red blood cell substitute, do not induce the accelerated blood clearance phenomenon in mice,” Drug Metabolism and Disposition, vol. 37, no. 11, pp. 2197–2203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. H. U. Lutz, P. Stammler, E. Jelezarova, M. Nater, and P. J. Späth, “High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3b(n)-IgG complexes,” Blood, vol. 88, no. 1, pp. 184–193, 1996. View at Google Scholar · View at Scopus
  142. E. T. M. Dams, W. J. G. Oyen, O. C. Boerman et al., “99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation,” Journal of Nuclear Medicine, vol. 41, no. 4, pp. 622–630, 2000. View at Google Scholar · View at Scopus
  143. T. Ishida, M. Ichihara, X. Wang, and H. Kiwada, “Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes,” Journal of Controlled Release, vol. 115, no. 3, pp. 243–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. S. M. Moghimi, A. J. Andersen, D. Ahmadvand, P. P. Wibroe, T. L. Andresen, and A. C. Hunter, “Material properties in complement activation,” Advanced Drug Delivery Reviews, vol. 63, no. 12, pp. 1000–1007, 2011. View at Publisher · View at Google Scholar
  145. T. Blunk, M. Luck, A. Calvor et al., “Kinetics of plasma protein adsorption on model particles for controlled drug delivery and drug targeting,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 42, no. 4, pp. 262–268, 1996. View at Google Scholar · View at Scopus
  146. I. Hamad, O. Al-Hanbali, A. C. Hunter, K. J. Rutt, T. L. Andresen, and S. M. Moghimi, “Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering,” ACS Nano, vol. 4, no. 11, pp. 6629–6638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Lück, W. Schröder, S. Harnisch et al., “Identification of plasma proteins facilitated by enrichment on particulate surfaces: analysis by two-dimensional electrophoresis and N-terminal microsequencing,” Electrophoresis, vol. 18, no. 15, pp. 2961–2967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  148. D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos, “Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors,” Pharmacological Reviews, vol. 51, no. 4, pp. 691–743, 1999. View at Google Scholar · View at Scopus
  149. D. L. Gordon, G. M. Johnson, and M. K. Hostetter, “Characteristics of iC3b binding to human polymorphonuclear leucocytes,” Immunology, vol. 60, no. 4, pp. 553–558, 1987. View at Google Scholar · View at Scopus
  150. J. B. Cornacoff, L. A. Hebert, W. L. Smead, M. E. VanAman, D. J. Birmingham, and F. J. Waxman, “Primate erythrocyte-immune complex-clearing mechanism,” Journal of Clinical Investigation, vol. 71, no. 2, pp. 236–247, 1983. View at Google Scholar · View at Scopus
  151. S. M. Moghimi, “Humoral-mediated recognition of “phagocyte resistant” beads by lymph node macrophages of poloxamine-treated rats,” Clinical Science, vol. 95, no. 3, pp. 389–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Zalipsky, “Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates,” Bioconjugate Chemistry, vol. 6, no. 2, pp. 150–165, 1995. View at Google Scholar · View at Scopus
  153. C. Monfardini and F. M. Veronese, “Stabilization of substances in circulation,” Bioconjugate Chemistry, vol. 9, no. 4, pp. 418–450, 1998. View at Publisher · View at Google Scholar · View at Scopus
  154. N. Vij, T. Min, R. Marasigan et al., “Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis,” Journal of Nanobiotechnology, vol. 8, article 22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. J. Park, P. M. Fong, J. Lu et al., “PEGylated PLGA nanoparticles for the improved delivery of doxorubicin,” Nanomedicine, vol. 5, no. 4, pp. 410–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. A. L. Klibanov, K. Maruyama, V. P. Torchilin, and L. Huang, “Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes,” FEBS Letters, vol. 268, no. 1, pp. 235–237, 1990. View at Publisher · View at Google Scholar · View at Scopus
  157. A. L. Klibanov, K. Maruyama, A. M. Beckerleg, V. P. Torchilin, and L. Huang, “Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target,” Biochimica et Biophysica Acta, vol. 1062, no. 2, pp. 142–148, 1991. View at Publisher · View at Google Scholar · View at Scopus
  158. K. Kostarelos and A. D. Miller, “Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors,” Chemical Society Reviews, vol. 34, no. 11, pp. 970–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. S. R. Wan, Y. Zheng, Y. Q. Liu, H. S. Yan, and K. L. Liu, “Fe3O4 nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers,” Journal of Materials Chemistry, vol. 15, no. 33, pp. 3424–3430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. Z. Li, L. Wei, M. Gao, and H. Lei, “One-pot reaction to synthesize biocompatible magnetite nanoparticles,” Advanced Materials, vol. 17, no. 8, pp. 1001–1005, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. Y. Zhang, N. Kohler, and M. Zhang, “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake,” Biomaterials, vol. 23, no. 7, pp. 1553–1561, 2002. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Boyer, V. Bulmus, P. Priyanto, W. Y. Teoh, R. Amal, and T. P. Davis, “The stabilization and bio-functionalization of iron oxide nanoparticles using heterotelechelic polymers,” Journal of Materials Chemistry, vol. 19, no. 1, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. U. I. Tromsdorf, N. C. Bigall, M. G. Kaul et al., “Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents,” Nano Letters, vol. 7, no. 8, pp. 2422–2427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Ji, W. Yang, Q. Ren, and D. Lu, “Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine),” Nanotechnology, vol. 20, no. 7, Article ID 075101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. E. K. U. Larsen, T. Nielsen, T. Wittenborn et al., “Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors,” ACS Nano, vol. 3, no. 7, pp. 1947–1951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. C. Barrera, A. P. Herrera, and C. Rinaldi, “Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol),” Journal of Colloid and Interface Science, vol. 329, no. 1, pp. 107–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. E. K. Lim, J. Yang, M. Y. Park et al., “Synthesis of water soluble PEGylated magnetic complexes using mPEG-fatty acid for biomedical applications,” Colloids and Surfaces B, vol. 64, no. 1, pp. 111–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. H. B. Na, I. S. Lee, H. Seo et al., “Versatile PEG-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals,” Chemical Communications, no. 48, pp. 5167–5169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. J. Xie, C. Xu, N. Kohler, Y. Hou, and S. Sun, “Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells,” Advanced Materials, vol. 19, no. 20, pp. 3163–3166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. F. Hu, K. G. Neoh, L. Cen, and E. T. Kang, “Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization,” Biomacromolecules, vol. 7, no. 3, pp. 809–816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. Q. L. Fan, K. G. Neoh, E. T. Kang, B. Shuter, and S. C. Wang, “Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake,” Biomaterials, vol. 28, no. 36, pp. 5426–5436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Wang, Y. Zhou, S. Yang, and B. Ding, “Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins,” Colloids and Surfaces B, vol. 67, no. 1, pp. 122–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. L. Wang, K. G. Neoh, E. T. Kang, B. Shuter, and S. C. Wang, “Superparamagnetic hyperbranched polyglycerolgrafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: an in vitro assessment,” Advanced Functional Materials, vol. 19, no. 16, pp. 2615–2622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. L. M. Bronstein, S. N. Sidorov, A. Y. Gourkova et al., “Interaction of metal compounds with “double-hydrophilic” block copolymers in aqueous medium and metal colloid formation,” Inorganica Chimica Acta, vol. 280, no. 1-2, pp. 348–354, 1998. View at Google Scholar · View at Scopus
  175. D. Shenoy, W. Fu, J. Li et al., “Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery,” International Journal of Nanomedicine, vol. 1, no. 1, pp. 51–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. B. C. Mei, K. Susumu, I. L. Medintz, and H. Mattoussi, “Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media,” Nature Protocols, vol. 4, no. 3, pp. 412–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. A. S. Karakoti, S. Das, S. Thevuthasan, and S. Seal, “PEGylated inorganic nanoparticles,” Angewandte Chemie—International Edition, vol. 50, no. 9, pp. 1980–1994, 2011. View at Publisher · View at Google Scholar
  178. M. T. Peracchia, “Stealth nanoparticles for intravenous administration,” S.T.P. Pharma Sciences, vol. 13, no. 3, pp. 155–161, 2003. View at Google Scholar · View at Scopus
  179. J. C. Y. Kah, K. Y. Wong, K. G. Neoh et al., “Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study,” Journal of Drug Targeting, vol. 17, no. 3, pp. 181–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. G. F. Schneider, V. Subr, K. Ulbrich, and G. Decher, “Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy,” Nano Letters, vol. 9, no. 2, pp. 636–642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. G. Prencipe, S. M. Tabakman, K. Welsher et al., “PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation,” Journal of the American Chemical Society, vol. 131, no. 13, pp. 4783–4787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. D. Miyamoto, M. Oishi, K. Kojima, K. Yoshimoto, and Y. Nagasaki, “Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine,” Langmuir, vol. 24, no. 9, pp. 5010–5017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. H. Du, P. D. Hamilton, M. A. Reilly, A. d’Avignon, P. Biswas, and N. Ravi, “A facile synthesis of highly water-soluble, core-shell organo-silica nanoparticles with controllable size via sol-gel process,” Journal of Colloid and Interface Science, vol. 340, no. 2, pp. 202–208, 2009. View at Publisher · View at Google Scholar
  184. Q. He, J. Zhang, J. Shi et al., “The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses,” Biomaterials, vol. 31, no. 6, pp. 1085–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. B. Thierry, L. Zimmer, S. McNiven, K. Finnie, C. Barbé, and H. J. Griesser, “Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles,” Langmuir, vol. 24, no. 15, pp. 8143–8150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. M. Joubert, C. Delaite, E. Bourgeat-Lami, and P. Dumas, “Hairy PEO-silica nanoparticles through surface-initiated polymerization of ethylene oxide,” Macromolecular Rapid Communications, vol. 26, no. 8, pp. 602–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  187. K. G. Neoh and E. T. Kang, “Functionalization of inorganic nanoparticles with polymers for stealth biomedical applications,” Polymer Chemistry, vol. 2, no. 4, pp. 747–759, 2011. View at Publisher · View at Google Scholar · View at Scopus