Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2017, Article ID 4070793, 12 pages
https://doi.org/10.1155/2017/4070793
Research Article

In Vivo siRNA Delivery and Rebound of Renal LRP2 in Mice

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Correspondence should be addressed to Michael T. Eadon; ude.iupui@nodaem

Received 11 August 2017; Revised 26 October 2017; Accepted 20 November 2017; Published 20 December 2017

Academic Editor: Ambikanandan Misra

Copyright © 2017 Michael T. Eadon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Singh and D. Peer, “SiRNA delivery: current trends and future perspectives,” Therapeutic Delivery, vol. 7, no. 2, pp. 51–53, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Stokman, Y. Qin, Z. Rácz, P. Hamar, and L. S. Price, “Application of siRNA in targeting protein expression in kidney disease,” Advanced Drug Delivery Reviews, vol. 62, no. 14, pp. 1378–1389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Dutta, N. Avitahl-Curtis, N. Pursell et al., “Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1,” Molecular Therapy, vol. 24, no. 4, pp. 770–778, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Liebow, X. Li, T. Racie et al., “An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria,” Journal of the American Society of Nephrology, vol. 28, no. 2, pp. 494–503, 2017. View at Publisher · View at Google Scholar
  5. X. Zheng, G. Y. Zang, J. Jiang et al., “Attenuating ischemia-reperfusion injury in kidney transplantation by perfusing donor organs with siRNA cocktail solution,” Transplantation, vol. 100, no. 4, pp. 743–752, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. J. Moser, S. Arcand, H.-B. Lin et al., “Protection of the transplant kidney from preservation injury by inhibition of matrix metalloproteinases,” PLoS ONE, vol. 11, no. 6, Article ID 0157508, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. P. R. Konkalmatt, L. D. Asico, Y. Zhang et al., “Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure,” JCI Insight, vol. 1, no. 8, 2016. View at Publisher · View at Google Scholar
  8. M. F. Persson, W. J. Welch, C. S. Wilcox, and F. Palm, “Kidney function after in vivo gene silencing of uncoupling protein-2 in streptozotocin-induced diabetic rats,” in Advances in Experimental Medicine and Biology, vol. 765, pp. 217–223, Springer, New York, NY, USA, 2013. View at Publisher · View at Google Scholar
  9. B. A. Molitoris, P. C. Dagher, R. M. Sandoval et al., “siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury,” Journal of the American Society of Nephrology, vol. 20, no. 8, pp. 1754–1764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Zhou, X. Zang, M. Ponnusamy et al., “Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression,” Journal of the American Society of Nephrology, vol. 27, no. 7, pp. 2092–2108, 2016. View at Publisher · View at Google Scholar
  11. Z. Li, L. Zhou, Y. Wang et al., “(Pro)renin receptor is an amplifier of wnt/beta-catenin signaling in kidney injury and fibrosis,” Journal of the American Society of Nephrology, vol. 28, no. 8, pp. 2393–2408, 2017. View at Publisher · View at Google Scholar
  12. H. Fu, Y. Tian, L. Zhou et al., “Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis,” Journal of the American Society of Nephrology, vol. 28, no. 3, pp. 785–801, 2017. View at Publisher · View at Google Scholar
  13. X. Wei, Y. Xia, F. Li et al., “Kindlin-2 mediates activation of TGF-beta/Smad signaling and renal fibrosis,” Journal of the American Society of Nephrology, vol. 24, no. 9, pp. 1387–1398, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Shimizu, Y. Hori, S. Kaname et al., “SiRNA-based therapy ameliorates glomerulonephritis,” Journal of the American Society of Nephrology, vol. 21, no. 4, pp. 622–633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Alidori, N. Akhavein, D. L. J. Thorek et al., “Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury,” Science Translational Medicine, vol. 8, no. 331, Article ID 331ra39, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Chitkara, S. Singh, and A. Mittal, “Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer,” Therapeutic Delivery, vol. 7, no. 4, pp. 245–255, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Edwards, “Nanomedicine: nanocarbon-mediated siRNA delivery to the kidney,” Nature Reviews Nephrology, vol. 12, no. 6, p. 314, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Shajari, B. Mansoori, S. Davudian, A. Mohammadi, and B. Baradaran, “Overcoming the challenges of siRNA delivery: nanoparticle strategies,” Current Drug Delivery, vol. 14, no. 1, pp. 36–46, 2017. View at Publisher · View at Google Scholar · View at Scopus
  19. S. De, S. Kuwahara, and A. Saito, “The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells,” Membranes, vol. 4, no. 3, pp. 333–335, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Nielsen, E. I. Christensen, and H. Birn, “Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease,” Kidney International, vol. 89, no. 1, pp. 58–67, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Hori, N. Aoki, S. Kuwahara et al., “Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity,” Journal of the American Society of Nephrology, vol. 28, no. 6, pp. 1783–1791, 2017. View at Publisher · View at Google Scholar
  22. A. Onodera, M. Tani, T. Michigami et al., “Role of megalin and the soluble form of its ligand RAP in Cd-metallothionein endocytosis and Cd-metallothionein-induced nephrotoxicity in vivo,” Toxicology Letters, vol. 212, no. 2, pp. 91–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. Akour, M. J. Kennedy, and P. M. Gerk, “The role of megalin in the transport of gentamicin across BeWo cells, an in vitro model of the human placenta,” The American Association of Pharmaceutical Scientists Journal, vol. 17, no. 5, pp. 1193–1199, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Schmitz, J. Hilpert, C. Jacobsen et al., “Megalin deficiency offers protection from renal aminoglycoside accumulation,” The Journal of Biological Chemistry, vol. 277, no. 1, pp. 618–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. E. Perez Bay, R. Schreiner, I. Benedicto et al., “The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells,” Nature Communications, vol. 7, Article ID 11550, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Kröning, D. Katz, A. K. Lichtenstein, and G. T. Nagami, “Differential effects of cisplatin in proximal and distal renal tubule epithelial cell lines,” British Journal of Cancer, vol. 79, no. 2, pp. 293–299, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Kaunitz, V. P. S. Cummins, D. Mishler, and G. T. Nagami, “Inhibition of gentamicin uptake into cultured mouse proximal tubule epithelial cells by L‐lysine,” The Journal of Clinical Pharmacology, vol. 33, no. 1, pp. 63–69, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Eadon, B. K. Hack, C. Xu, B. Ko, F. Gary Toback, and P. N. Cunningham, “Endotoxemia alters tight junction gene and protein expression in the kidney,” American Journal of Physiology-Renal Physiology, vol. 303, no. 6, pp. F821–F830, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. M. T. Eadon, R. J. Hause, A. L. Stark et al., “Genetic variants contributing to colistin cytotoxicity: Identification of TGIF1 and HOXD10 using a population genomics approach,” International Journal of Molecular Sciences, vol. 18, no. 3, article no. 661, 2017. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671–675, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Czauderna, M. Fechtner, S. Dames et al., “Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells,” Nucleic Acids Research, vol. 31, no. 11, pp. 2705–2716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. T. Love, K. P. Mahon, C. G. Levins et al., “Lipid-like materials for low-dose, in vivo gene silencing,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 107, no. 5, pp. 1864–1869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Hong, Z. Qian, S. Shen et al., “High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse,” Biochemical Journal, vol. 390, no. 3, pp. 675–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Gao, S. Hein, F. Dagnæs-Hansen et al., “Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing,” Theranostics, vol. 4, no. 10, pp. 1039–1051, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Li, R. Cong, and D. Biemesderfer, “The COOH terminus of megalin regulates gene expression in opossum kidney proximal tubule cells,” American Journal of Physiology-Cell Physiology, vol. 295, no. 2, pp. C529–C537, 2008. View at Publisher · View at Google Scholar · View at Scopus