Journal of Drug Delivery The latest articles from Hindawi © 2017 , Hindawi Limited . All rights reserved. Recent Advances in Hydrogel-Based Drug Delivery for Melanoma Cancer Therapy: A Mini Review Wed, 09 Aug 2017 07:08:22 +0000 The purpose of this study is to describe some of the latest advances in using hydrogels for cancer melanoma therapy. Hydrogel formulations of polymeric material from natural or synthetic sources combined with therapeutic agents have gained great attention in the recent years for treating various maladies. These formulations can be categorized according to the strategies that induce cancer cell death in melanoma. First of all, we should note that these formulations can only play a supporting role that releases bioactive agents against cancer cells rather than the main role. This strategy involves delivering the drug via transdermal pathways, resulting in the death of cancerous cells. Another strategy utilizes magnetic gel composites to combat melanoma via hyperthermia therapy. This review discusses both transdermal and hyperthermia therapies and the recent advances that have occurred in the field. Sowmya Vishnubhakthula, Ravinder Elupula, and Esteban F. Durán-Lara Copyright © 2017 Sowmya Vishnubhakthula et al. All rights reserved. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery Wed, 05 Apr 2017 09:42:29 +0000 Phospholipid-based deformable nanovesicles (DNVs) that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol). AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue—cranial bone—by DNVs as compared to nondeformable nanovesicles (NVs) or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery. Naren Subbiah, Jesus Campagna, Patricia Spilman, Mohammad Parvez Alam, Shivani Sharma, Akishige Hokugo, Ichiro Nishimura, and Varghese John Copyright © 2017 Naren Subbiah et al. All rights reserved. Deposition Dosages of Three Cromolyn Forms by Cascade Impactor Sun, 02 Apr 2017 00:00:00 +0000 Among inhaled asthma therapies, the present study aimed to identify factors for selecting the type of inhalation therapy for asthma. Three methods are used to deliver inhaled cromoglycate, and the airway deposition rate was evaluated using a cascade impactor with 3 dosage forms: dry powder (DP), pressurized metered dose inhaler (pMDI), and solution (jet- and mesh-types). The percentage of particles with diameters of 2–6 μm was 17.0% for the capsule, 51.8% for pMDI, 49.0% for jet-type NE-C28, and 40.4% for mesh-type NE-U22. The amounts of drug deposited in the bronchi were based on the particle distribution of the various dosage forms: 3.4 mg for the capsule, 1.0 mg for pMDI, 9.8 mg for one solution (jet-type NE-C28), and 8.1 mg for the other solution (mesh-type NE-U22). Jet-type or mesh-type electric nebulizers delivered 2-3 times more of the drug than capsules, and, compared with pMDI, 8-9 times more of the drug was deposited in the bronchi/bronchioles. Electric nebulizers are considered the best method. This study suggests that the size of particles deposited at sites of obstruction is larger than previously reported, and no obstruction of small airways occurs (<2 mm). Norihide Murayama, Kei Asai, Kikuno Murayama, Chihiro Kitatsuji, and Satoru Doi Copyright © 2017 Norihide Murayama et al. All rights reserved. Kanamycin Sulphate Loaded PLGA-Vitamin-E-TPGS Long Circulating Nanoparticles Using Combined Coating of PEG and Water-Soluble Chitosan Thu, 02 Mar 2017 00:00:00 +0000 Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. Due to its intense hydrophilicity, KS is cleared from the body within 8 h. KS has a very short plasma half-life (2.5 h). KS is used in high concentrations to reach the therapeutic levels in plasma, which results in serious nephrotoxicity/ototoxicity. To overcome aforementioned limitations, the current study aimed to develop KS loaded PLGA-Vitamin-E-TPGS nanoparticles (KS-PLGA-TPGS NPs), to act as an efficient carrier for controlled delivery of KS. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to KS-PLGA-TPGS NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was raised for surface modification of NPs. Surface modified NPs (KS-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetics and in vivo biodistribution following intramuscular administration were investigated. NPs surface charge was close to neutral +3.61 mV and significantly affected by the WSC coating. KS-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long drew-out the blood circulation half-life with resultant reduced kidney sequestration vis-à-vis KS-PLGA-TPGS NPs. The studies, therefore, indicate the successful formulation development of KS-PEG-WSC NPs with reduced frequency of dosing of KS indicating low incidence of nephrotoxicity/ototoxicity. Sanaul Mustafa, V. Kusum Devi, and Roopa S. Pai Copyright © 2017 Sanaul Mustafa et al. All rights reserved. Formulation of Bilayer Benzydamine HCl Patch Targeted For Gingivitis Thu, 29 Dec 2016 14:44:47 +0000 In the present study bilayer patch of benzydamine HCl was developed using solvent casting method. Different substrates were attempted like Petri dish, glass-and-ring, and teflon-and-ring for selection of the proper option to formulate patch that should give easily peelable film with adequate mechanical properties. HPMC E15 LV was used in different concentrations for obtaining proper viscosity of solution for pouring on to surface and ring, that it should not leak from ring. The second layer was optimized by using different polymer like eudragit RSPO, eudragit RSPO + EC, and eudragit NE30 D for efficient layer bonding. The minimum release from backing membrane was established by diffusion study as compared to from drug loaded layer. The optimized batches were evaluated for folding endurance, weight variation, thickness, drug content, drug release, tensile strength, layer separation, mucoadhesion, moisture uptake, and layer bonding. The novel gingival patch of benzydamine HCl developed would be beneficial in optimizing the therapy. Piyush Sanghai, Tanaji Nandgude, and Sushilkumar Poddar Copyright © 2016 Piyush Sanghai et al. All rights reserved. Stabilized Polymer Micelles for the Development of IT-147, an Epothilone D Drug-Loaded Formulation Thu, 01 Dec 2016 10:27:41 +0000 Epothilones have demonstrated promising potential for oncology applications but suffer from a narrow therapeutic window. Epothilone D stabilizes microtubules leading to apoptosis, is active against multidrug-resistant cells, and is efficacious in animal tumor models despite lack of stability in rodent plasma. Clinical development was terminated in phase II due to dose limiting toxicities near the efficacious dose. Taken together, this made epothilone D attractive for encapsulation in a stabilized polymer micelle for improved safety and efficacy. We have designed a library of triblock copolymers to develop IT-147, a lead formulation of epothilone D that extends plasma circulation for accumulation in the tumor environment, and potentially decrease systemic exposure to reduce dose limiting toxicities. The drug loading efficiency for IT-147 exceeds 90%, is 75 nm in diameter, and demonstrates pH-dependent release of epothilone D without chemical conjugation or enzymatic activation. Administration of IT-147 at 20 mg/kg increases exposure of epothilone D to the plasma compartment over 6-fold compared to free drug. At the same dose, 20 mg/kg epothilone D from IT-147 is considered the no observed adverse effect level (NOAEL) but is the maximum tolerated dose for free drug. Consequently, IT-147 is positioned to be a safer, more effective means to deliver epothilone D. Adam Carie, Bradford Sullivan, Tyler Ellis, J. Edward Semple, Taylor Buley, Tara Lee Costich, Richard Crouse, Suzanne Bakewell, and Kevin Sill Copyright © 2016 Adam Carie et al. All rights reserved. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery Sun, 20 Nov 2016 11:33:11 +0000 Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG < CSG < ACG. Calcium was the predominant ion in CSG while potassium was predominant in KYG. The FTIR spectra of CSG and KYG were similar and slightly different from that of ACG. Acacia and khaya gums exhibited the same thermal behaviour which is different from that of CSG. X-ray diffraction revealed that the three gums are the same type of polymer, the major difference being the concentration of metal ions. This work suggests the application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs. Emmanuel O. Olorunsola, Partap G. Bhatia, Babajide A. Tytler, and Michael U. Adikwu Copyright © 2016 Emmanuel O. Olorunsola et al. All rights reserved. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages Mon, 14 Nov 2016 11:09:53 +0000 Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker’s yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. Ernesto R. Soto, Olivia O’Connell, Fusun Dikengil, Paul J. Peters, Paul R. Clapham, and Gary R. Ostroff Copyright © 2016 Ernesto R. Soto et al. All rights reserved. Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems Thu, 27 Oct 2016 09:59:51 +0000 Administration of drug molecules by inhalation route for treatment of respiratory diseases has the ability to deliver drugs, hormones, nucleic acids, steroids, proteins, and peptides, particularly to the site of action, improving the efficacy of the treatment and consequently lessening adverse effects of the treatment. Numerous inhalation delivery systems have been developed and studied to treat respiratory diseases such as asthma, COPD, and other pulmonary infections. The progress of disciplines such as biomaterials science, nanotechnology, particle engineering, molecular biology, and cell biology permits further improvement of the treatment capability. The present review analyzes modern therapeutic approaches of inhaled drugs with special emphasis on novel drug delivery system for treatment of various respiratory diseases. Piyush Mehta Copyright © 2016 Piyush Mehta. All rights reserved. Solid Lipid Nanoparticles Improve the Diclofenac Availability in Vitreous after Intraocular Injection Mon, 10 Oct 2016 07:50:01 +0000 Purpose. In order to improve the drug availability after intravitreal administration, solid lipid nanoparticles (SLNs) containing diclofenac were prepared. Methods. In this experimental study, 18 albino rabbits were included. In right and left eyes of all rabbits, SLNs containing diclofenac and commercial form of diclofenac (0.3 mg drug) were intravitreally injected, respectively. One, four, twelve, twenty-four, and forty-eight hours after injection, vitreous and aqueous humor samples were obtained in all cases. Then, the concentration of diclofenac sodium was evaluated in all samples. Results. Size of nanoparticles was around 170 nm after preparation. Drug concentration in eyes injected with SLNs was significantly higher than left eyes injected with commercial formulation up to 4 hours after intravitreal injection (). Diclofenac was quantified in samples up to 48 hours after intraocular injection. Four hours after intravitreal injection, the concentration of diclofenac in vitreous and aqueous humor of eyes receiving SLNs was, respectively, 2.5 and 6.5 times higher than eyes injected with commercial form of drug. Conclusions. Here, we demonstrate the potential of SLNs as a carrier of diclofenac for intraocular injection in order to prevent the systemic effects of the drug, increase the injection intervals, and improve the patient compliance. Mojtaba Abrishami, Majid Abrishami, Asma Mahmoudi, Navid Mosallaei, Mohammad Vakili Ahrari Roodi, and Bizhan Malaekeh-Nikouei Copyright © 2016 Mojtaba Abrishami et al. All rights reserved. Sustained Release of Protein Therapeutics from Subcutaneous Thermosensitive Biocompatible and Biodegradable Pentablock Copolymers (PTSgels) Wed, 05 Oct 2016 10:04:02 +0000 Objective. To evaluate thermosensitive, biodegradable pentablock copolymers (PTSgel) for sustained release and integrity of a therapeutic protein when injected subcutaneously. Materials and Methods. Five PTSgels with PEG-PCL-PLA-PCL-PEG block arrangements were synthesized. In vitro release of IgG from PTSgels and concentrations was evaluated at 37°C. Released IgG integrity was characterized by SDS-PAGE. In vitro disintegration for 10GH PTSgel in PBS was monitored at 37°C over 72 days using gravimetric loss and GPC analysis. Near-infrared IgG in PTSgel was injected subcutaneously and examined by in vivo imaging and histopathology for up to 42 days. Results. IgG release was modulated from approximately 7 days to more than 63 days in both in vitro and in vivo testing by varying polymer composition, concentration of PTSgel aqueous solution, and concentration of IgG. Released IgG in vitro maintained structural integrity by SDS-PAGE. Subcutaneous PTSgels were highly biocompatible and in vitro IgG release occurred in parallel with the disappearance of subcutaneous gel in vivo. Conclusions. Modulation of release of biologics to fit the therapeutic need can be achieved by varying the biocompatible and biodegradable PTSgel composition. Release of IgG parallels disappearance of the polymeric gel; hence, little or no PTSgel remains after drug release is complete. Elizabeth Schaefer, Santhi Abbaraju, Mary Walsh, Donna Newman, Jacklyn Salmon, Rasidul Amin, Sidney Weiss, Ulrich Grau, Poonam Velagaleti, and Brian Gilger Copyright © 2016 Elizabeth Schaefer et al. All rights reserved. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s Tue, 16 Aug 2016 14:28:07 +0000 The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. Apurv Patel, Hitesh Dodiya, Pragna Shelate, Divyesh Shastri, and Divyang Dave Copyright © 2016 Apurv Patel et al. All rights reserved. Etodolac Containing Topical Niosomal Gel: Formulation Development and Evaluation Mon, 11 Jul 2016 00:00:00 +0000 The present study aimed to investigate the delivery potential of Etodolac (ETD) containing topical niosomal gel. Niosomal formulations were prepared by thin film hydration method at various ratios of cholesterol and Span 60 and were evaluated with respect to particle size, shape, entrapment efficiency, and in vitro characteristics. Dicetyl phosphate (DCP) was also added in the niosomal formulation. Mean particle size of niosomal formulation was found to be in the range of 2 μm to 4 μm. Niosomal formulation N2 (1 : 1) ratio of cholesterol and surfactant displayed good entrapment efficiency (96.72%). TEM analyses showed that niosomal formulation was spherical in shape. Niosomal formulation (N2) displayed high percentage of drug release after 24 h (94.91) at (1 : 1) ratio of cholesterol : surfactant. Further selected niosomal formulation was used to formulate topical gel and was characterized with respect to its various parameters such as pH, viscosity, spreadability, ex vivo study, and in vivo potential permeation. Ex vivo study showed that niosomal gel possessed better skin permeation study than the plain topical gel. Further in vivo study revealed good inhibition of inflammation in case of topical niosomal gel than plain gel and niosomal formulation. The present study suggested that topical niosomal gel formulations provide sustained and prolonged delivery of drug. Gyati Shilakari Asthana, Abhay Asthana, Davinder Singh, and Parveen Kumar Sharma Copyright © 2016 Gyati Shilakari Asthana et al. All rights reserved. Development of Oral Dissolvable Films of Diclofenac Sodium for Osteoarthritis Using Albizia and Khaya Gums as Hydrophilic Film Formers Mon, 30 May 2016 13:07:37 +0000 Oral dissolvable films (ODFs) of diclofenac sodium intended for osteoarthritis were prepared using Albizia and Khaya gums as hydrophilic film formers. The physicochemical properties of the gums were characterized and the gums were used to prepare diclofenac sodium ODFs (~50 mg/4 cm2 film) by solvent casting. The two gums showed satisfactory film forming properties. The physicomechanical properties, drug-excipient compatibility, and in vitro drug release of the films in phosphate buffer pH 6.8 were studied. Khaya gum had higher extraction yield, moisture content, insoluble matter and true density while Albizia gum showed greater swelling capacity, solubility, and minerals content. The ODFs were thin, soft, and flexible with smooth glossy surfaces and possessed satisfactory physicomechanical properties. FTIR studies showed that no interaction occurred between the drug and the gums. The ODFs disintegrated in <45 s achieved >75% drug release within 7 min with dissolution efficiencies of ~83–96%. Drug releases from F2, F3, F4, F5, and F6 were similar to F1 (; and ) while F7 differed markedly from F1 (; and ). Drug release followed the Higuchi kinetic model which is indicative of Fickian drug diffusion. Martina Aduenimaa Bonsu, Kwabena Ofori-Kwakye, Samuel Lugrie Kipo, Mariam El Boakye-Gyasi, and Mary-Ann Fosu Copyright © 2016 Martina Aduenimaa Bonsu et al. All rights reserved. Investigation of Diffusion Characteristics through Microfluidic Channels for Passive Drug Delivery Applications Thu, 26 May 2016 13:48:23 +0000 Microfluidics has many drug delivery applications due to the ability to easily create complex device designs with feature sizes reaching down to the 10s of microns. In this work, three different microchannel designs for an implantable device are investigated for treatment of ocular diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. Devices were fabricated using polydimethylsiloxane (PDMS) and soft lithography techniques, where surface chemistry of the channels was altered using 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane (PEG-silane). An estimated delivery rate for a number of common drugs was approximated for each device through the ratio of the diffusion coefficients for the dye and the respective drug. The delivery rate of the model drugs was maintained at a physiological condition and the effects of channel design and surface chemistry on the delivery rate of the model drugs were recorded over a two-week period. Results showed that the surface chemistry of the device had no significant effect on the delivery rate of the model drugs. All designs were successful in delivering a constant daily dose for each model drug. Marcus J. Goudie, Alyssa P. Ghuman, Stephanie B. Collins, Ramana M. Pidaparti, and Hitesh Handa Copyright © 2016 Marcus J. Goudie et al. All rights reserved. Design and Evaluation of Voriconazole Loaded Solid Lipid Nanoparticles for Ophthalmic Application Thu, 12 May 2016 09:04:18 +0000 Voriconazole is a second-generation antifungal agent with excellent broad spectrum of antifungal activity commercially available for oral and intravenous administration. Systemic administration of voriconazole is associated with side effects including visual and hepatic abnormalities. This study assessed the feasibility of using solid lipid nanoparticles for ocular delivery of voriconazole adopting stearic acid as lipidic material, tween 80 as a stabilizer, and Carbopol 934 as controlled release agent and for increasing the precorneal residence time in eye. The systems were prepared using two different methods, that is, ultrasonication method and microemulsion technique. The results indicated that the larger particle size of SLNs was found with microemulsion technique ( nm to ) compared to SLN prepared with ultrasonication method ( nm to  nm). The polydispersity index values were less than 0.3 for all formulations and zeta potential of the prepared formulations by these two methods varied from − mV to − mV. Powder X-ray diffraction and differential scanning calorimetry indicated decrease in crystallinity of drug. The in vitro release study and the SLN formulations prepared with ultrasonication method demonstrated sustained release up to 12 hours. This study demonstrated that SLN prepared by ultrasonication method is more suitable than microemulsion technique without causing any significant effect on corneal hydration level. Anubha Khare, Inderbir Singh, Pravin Pawar, and Kanchan Grover Copyright © 2016 Anubha Khare et al. All rights reserved. Poly(lactic-co-glycolic) Acid-Chitosan Dual Loaded Nanoparticles for Antiretroviral Nanoformulations Sun, 17 Apr 2016 11:01:41 +0000 Poly(lactic-co-glycolic acid) (PLGA) chitosan (CS) coated nanoparticles (NPs) were loaded with two antiretrovirals (ARVs) either lamivudine (LMV) which is hydrophilic or nevirapine (NVP) which is hydrophobic or both LMV and NVP. These ARVs are of importance in resource-limited settings, where they are commonly used in human immunodeficiency virus (HIV-1) treatment due to affordability and accessibility. NPs prepared by a water-oil-water emulsion and reduced pressure solvent evaporation technique were determined to have a positive zeta potential, a capsule-like morphology, and an average hydrodynamic diameter of 240 nm. Entrapment of NVP as a single ARV had a notable increase in NP size compared to LMV alone or in combination with LMV. NPs stored at room temperature in distilled water maintained size, polydispersity (PDI), and zeta potential for one year. No changes in size, PDI, and zeta potential were observed for NPs in 10% sucrose in lyophilized or nonlyophilized states stored at 4°C and −20°C, respectively. Freezing NPs in the absence of sucrose increased NP size. Drug loading, encapsulation efficiency, and kinetic release profiles were quantified by high performance liquid chromatography (HPLC). Our novel nanoformulations have the potential to improve patient outcomes and expand drug access in resource-limited countries for the treatment of HIV-1. Faithful Makita-Chingombe, Hilliard L. Kutscher, Sara L. DiTursi, Gene D. Morse, and Charles C. Maponga Copyright © 2016 Faithful Makita-Chingombe et al. All rights reserved. PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery Wed, 20 Jan 2016 12:15:32 +0000 Protein drugs like growth factors are promising therapeutics for damaged-tissue repair. Their local delivery often requires biomaterial carriers for achieving the therapeutic dose range while extending efficacy. In this study, polyethylene glycol (PEG) and keratin were crosslinked and used as sponge-like scaffolds (KTN-PEG) to absorb test proteins with different isoelectric points (pI): albumin (~5), hemoglobin (~7), and lysozyme (~11). The protein release kinetics was influenced by charge at physiological pH 7.4. The keratin network, with pI 5.3, electrostatically attracted lysozyme and repulsed albumin generating the release rate profile: albumin > hemoglobin > lysozyme. However, under acidic conditions (pH 4), all proteins including keratins were positively charged and consequently intermolecular repulsion altered the release hierarchy, now determined by size (MW) diffusion: lysozyme (14 kDa) > hemoglobin (64 kDa) > albumin (66 kDa). Vascular endothelial growth factor C (VEGF-C), with properties comparable to lysozyme, was absorbed into the KTN-PEG scaffold. Endothelial cells cultured on this substrate had significantly larger numbers than on scaffolds without VEGF-C suggesting that the ionically bound and retained growth factor at neutral pH indirectly increased acute cell attachment and viability. PEG and keratin based sequestrations of proteins with basic pIs are therefore a feasible strategy with potential applications for selective biologics delivery. Roche C. de Guzman and Sina Y. Rabbany Copyright © 2016 Roche C. de Guzman and Sina Y. Rabbany. All rights reserved. Reassessing the Role of Intra-Arterial Drug Delivery for Glioblastoma Multiforme Treatment Sun, 27 Dec 2015 12:20:49 +0000 Effective treatment for glioblastoma (GBM) will likely require targeted delivery of several specific pharmacological agents simultaneously. Intra-arterial (IA) delivery is one technique for targeting the tumor site with multiple agents. Although IA chemotherapy for glioblastoma (GBM) has been attempted since the 1950s, the predicted benefits remain unproven in clinical practice. This review focuses on innovative approaches to IA drug delivery in treating GBM. Guided by novel in vitro and in vivo optical measurements, newer pharmacokinetic models promise to better define the complex relationship between background cerebral blood flow and drug injection parameters. Advanced optical technologies and tracers, unique nanoparticles designs, new cellular targets, and rational drug formulations are continuously modifying the therapeutic landscape for GBM. Personalized treatment approaches are emerging; however, such tailored approaches will largely depend on effective drug delivery techniques and on the ability to simultaneously deliver multidrug regimens. These new paradigms for tumor-selective drug delivery herald dramatic improvements in the effectiveness of IA chemotherapy for GBM. Therefore, within this context of so-called “precision medicine,” the role of IA delivery for GBM is thoroughly reassessed. Jason A. Ellis, Matei Banu, Shaolie S. Hossain, Rajinder Singh-Moon, Sean D. Lavine, Jeffrey N. Bruce, and Shailendra Joshi Copyright © 2015 Jason A. Ellis et al. All rights reserved. Impact of Computerized Order Entry to Pharmacy Interface on Order-Infusion Pump Discrepancies Wed, 18 Nov 2015 07:44:55 +0000 Background. The ability of safety technologies to decrease errors, harm, and risk to patients has yet to be demonstrated consistently. Objective. To compare discrepancies between medication and intravenous fluid (IVF) orders and bedside infusion pump settings within a pediatric intensive care unit (PICU) before and after implementation of an interface between computerized physician order entry (CPOE) and pharmacy systems. Methods. Within a 72-bed PICU, medication and IVF orders in the CPOE system and bedside infusion pump settings were collected. Rates of discrepancy were calculated and categorized by type. Results were compared to a study conducted prior to interface implementation. Expansion of PICU also occurred between study periods. Results. Of 455 observations, discrepancy rate decreased for IVF () compared to previous study. Overall discrepancy rate for medications was unchanged; however, medications infusing without an order decreased (), and orders without corresponding infusion increased (). Conclusions. Following implementation of an interface between CPOE and pharmacy systems, fewer discrepancies between IVF orders and infusion pump settings were observed. Discrepancies for medications did not change, and some types of discrepancies increased. In addition to interface implementation, changes in healthcare delivery and workflow related to ICU expansion contributed to observed changes. Rebecca A. Russell, David Triscari, Kathy Murkowski, and Matthew C. Scanlon Copyright © 2015 Rebecca A. Russell et al. All rights reserved. Investigation of Fatty Acid Ketohydrazone Modified Liposome’s Properties as a Drug Carrier Mon, 16 Nov 2015 07:48:02 +0000 pH-responsive liposomes were prepared by modifying the liposome with acid-cleaving amphiphiles. Palmitic ketohydrazone (P-KH) or stearic ketohydrazone (S-KH), composed of hydrophilic sugar headgroup and hydrophobic acyl chain, was used as a modifier of the DMPC liposome. Because the ketohydrazone group of P-KH or S-KH was cleaved at low pH conditions (<pH 5.0), the delivery of the P-KH modified liposomes was observed probably via an endocytic pathway. The membrane properties of these liposomes were characterized, focusing on the variation of both polarity (measured by Laurdan) and membrane fluidity (measured by DPH) at low pH condition. The interface of the P-KH modified liposome at acidic pH was found to become more hydrophobic and less fluidic as compared with that at neutral pH; that is, P-KH modified liposome became more rigid structure. Therefore, it seems that the P-KH modified liposome could protect encapsulated drugs from the enzymes in the lysosome. This study shows the novel approach about design of pH-responsive liposomes based on the membrane properties. Keita Hayashi, Madoka Kiriishi, Keishi Suga, Yukihiro Okamoto, and Hiroshi Umakoshi Copyright © 2015 Keita Hayashi et al. All rights reserved. Characterization and Compatibility Studies of Different Rate Retardant Polymer Loaded Microspheres by Solvent Evaporation Technique: In Vitro-In Vivo Study of Vildagliptin as a Model Drug Thu, 12 Nov 2015 09:02:34 +0000 The present study has been performed to microencapsulate the antidiabetic drug of Vildagliptin to get sustained release of drug. The attempt of this study was to formulate and evaluate the Vildagliptin loaded microspheres by emulsion solvent evaporation technique using different polymers like Eudragit RL100, Eudragit RS100, Ethyl cellulose, and Methocel K100M. In vitro dissolution studies were carried out in 0.1 N HCl for 8 hours according to USP paddle method. The maximum and minimum drug release were observed as 92.5% and 68.5% from microspheres, respectively, after 8 hours. Release kinetics were studied in different mathematical release models to find out the linear relationship and release rate of drug. The SEM, DSC, and FTIR studies have been done to confirm good spheres and smooth surface as well as interaction along with drug and polymer. In this experiment, it is difficult to explain the exact mechanism of drug release. But the drug might be released by both diffusion and erosion as the correlation coefficient () best fitted with Korsmeyer model and release exponent () was 0.45–0.89. At last it can be concluded that all in vitro and in vivo experiments exhibited promising result to treat type II diabetes mellitus with Vildagliptin microspheres. Irin Dewan, Swarnali Islam, and Md. Sohel Rana Copyright © 2015 Irin Dewan et al. All rights reserved. Design and Characterization of Buccoadhesive Liquisolid System of an Antihypertensive Drug Thu, 22 Oct 2015 08:17:44 +0000 Nifedipine is an antihypertensive BCS class II drug which has poor bioavailability when given orally. The objective of the present study was to increase the bioavailability of nifedipine, by formulation and evaluation of a buccoadhesive liquisolid system using magnesium aluminium silicate (Neusilin) as both carrier and coating material and dissolution media were selected based on the solubility studies. A mixture of carboxymethylcellulose sodium and carbomer was used as mucoadhesive polymers. Buccoadhesive tablets were prepared by direct compression. FTIR studies confirmed no interaction between drug and excipients. XRD studies indicated change/reduction in crystallinity of drug. The powder characteristics were evaluated by different flow parameters to comply with pharmacopoeial specifications. The dissolution studies for liquisolid compacts and tablet formulations were carried out and it was found that nifedipine liquisolid tablets formulated from bioadhesive polymers containing 49% liquisolid system, 17.5% carbomer, and 7.5% carboxymethylcellulose sodium showed the best results in terms of dissolution properties. Prepared formulation batches were evaluated for swelling, bioadhesion strength, ex vivo residence time, and permeability studies. The optimized batch was showing promising features of the system. Formulating nifedipine as a buccoadhesive tablet allows reduction in dose and offers better control over the plasma levels. Nilesh P. Kala, Divyesh H. Shastri, and Pragna K. Shelat Copyright © 2015 Nilesh P. Kala et al. All rights reserved. Dosing-Time Dependent Effects of Sodium Nitroprusside on Cerebral, Renal, and Hepatic Catalase Activity in Mice Sun, 15 Mar 2015 07:58:42 +0000 To investigate the time dependence of sodium nitroprusside- (NPS-) induced oxidative effects, the authors study the variation of the antioxidant enzyme CAT activity in various tissues after the administration of a single 2.5 mg/kg dose of SNP or sodium chloride (NaCl 0.9%). For each of the two dosing times (1 and 13 hours after light onset, HALO, which correspond to the beginning of diurnal rest span and of nocturnal activity span of mice, resp.), brain, kidney, and liver tissues were excised from animals at 0, 1, 3, 6, 9, 12, 24, and 36 h following the drug administration and CAT activity was assayed. The results suggest that SNP-induced stimulation of CAT activity is greater in all three tissues when the drug is administered at 1 HALO than at 13 HALO. Two-way ANOVA revealed that CAT activity significantly () varied as a function of the sampling time but not of the treatment in all three tissues. Moreover, a statistically significant () interaction between the organ sampling-time and the SNP treatment was revealed in kidney regardless of the dosing time, whereas a highly significant () interaction was validated in liver only in animals injected at 13 HALO. Mamane Sani, Hichem Sebai, Roberto Refinetti, Mohan Mondal, Néziha Ghanem-Boughanmi, Naceur A. Boughattas, and Mossadok Ben-Attia Copyright © 2015 Mamane Sani et al. All rights reserved. Formulation Development and Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate, Cetirizine Hydrochloride in Combined Pharmaceutical Dosage Form: A New Era in Novel Drug Delivery for Pediatrics and Geriatrics Wed, 25 Feb 2015 09:48:12 +0000 The objective of the present study was to prepare the fast disintegrating tablet of Salbutamol Sulphate, Cetirizine Hydrochloride in combined tablet dosage form for respiratory disorders such as bronchitis, asthma, and coughing for pediatrics and geriatrics. The tablets were prepared by direct compression technique. Superdisintegrant such as Sodium Starch Glycolate was optimized as 4% on the basis of least disintegration time. Different binders such as MCC and PVP K-30 were optimized along with optimized superdisintegrant concentration. 1% MCC was selected as optimum binder concentration on the basis of least disintegration time. The tablets were evaluated for hardness, friability, weight variation, wetting time, disintegration time, and drug content uniformity. Optimized formulation was further evaluated by in vitro dissolution test, drug-excipient compatibility, and accelerated stability study. Percent weight variation and content uniformity were within the acceptable limit. The friability was less than 1%. The wetting time and disintegration time were practically good for all formulations. FTIR studies and accelerated stability study showed that there was no interaction between the drug and excipients. It was concluded that, by employing commonly available pharmaceutical excipients such as superdisintegrants, hydrophilic and swellable excipients and proper filler, a fast disintegrating tablet of Salbutamol Sulphate, Cetirizine Hydrochloride in combined tablet dosage form, were formulated successfully with desired characteristics. Deepak Sharma, Gurmeet Singh, Dinesh Kumar, and Mankaran Singh Copyright © 2015 Deepak Sharma et al. All rights reserved. Calcium Alginate-Neusilin US2 Nanocomposite Microbeads for Oral Sustained Drug Delivery of Poor Water Soluble Drug Aceclofenac Sodium Mon, 23 Feb 2015 13:46:29 +0000 The aim of the present study was to formulate and investigate the calcium alginate- (CA-) Neusilin US2 nanocomposite microbeads containing preconcentrate of aceclofenac sodium (ACF-Na) liquid microemulsion (L-ME) for enhancement of oral bioavailability. The preconcentrate L-ME is prepared by using Labrafac PG, Labrasol, and Span 80 as oil, surfactant, and cosurfactant, respectively. The solid CA nanocomposite microbeads of L-ME prepared by microemulsification internal gelation technique using sodium alginate (SA) gelling agent, Neusilin US2 as adsorbent, and calcium chloride as crosslinking agent. L-ME has good thermodynamic stability; globule size was found to be 32.4 nm with polydispersity index 0.219 and −6.32 mV zeta potential. No significant interactions of excipients, drug in the formulations observed by FT-IR, DSC and XPRD. The concentration of SA and Neusilin US2 influences the flow properties, mean particle size, mechanical strength, drug entrapment efficiency, and percentage of drug release. All the formulations show minimum drug release in simulated gastric fluid (SGF) pH 1.2 for initial 2 h, maximum drug release in pH 6.8 phosphate buffer solution (PBS) at 6 h, followed by sustaining in simulated intestinal fluid (SIF) of pH 7.4 up to 12 h. The interaction of SA with Neusilin US2 creates a thick thixotropic gel network structure which acts as barrier to control the release of drug in the alkaline pH environment. Neusilin US2 is a novel filler used to convert L-ME into solid nanocomposite microbeads to enhance dissolution rate of poor water soluble drugs sustaining the drug release for prolonged period of time. Manjanna Kolammanahalli Mallappa, Rajesh Kesarla, and Shivakumar Banakar Copyright © 2015 Manjanna Kolammanahalli Mallappa et al. All rights reserved. Formulation and Evaluation of Optimized Oxybenzone Microsponge Gel for Topical Delivery Wed, 18 Feb 2015 17:34:39 +0000 Background. Oxybenzone, a broad spectrum sunscreen agent widely used in the form of lotion and cream, has been reported to cause skin irritation, dermatitis, and systemic absorption. Aim. The objective of the present study was to formulate oxybenzone loaded microsponge gel for enhanced sun protection factor with reduced toxicity. Material and Method. Microsponge for topical delivery of oxybenzone was successfully prepared by quasiemulsion solvent diffusion method. The effects of ethyl cellulose and dichloromethane were optimized by the 32 factorial design. The optimized microsponges were dispersed into the hydrogel and further evaluated. Results. The microsponges were spherical with pore size in the range of 0.10–0.22 µm. The optimized formulation possesses the particle size and entrapment efficiency of 72 ± 0.77 µm and 96.9 ± 0.52%, respectively. The microsponge gel showed the controlled release and was nonirritant to the rat skin. In creep recovery test it had shown highest recovery indicating elasticity. The controlled release of oxybenzone from microsponge and barrier effect of gel result in prolonged retention of oxybenzone with reduced permeation activity. Conclusion. Evaluation study revealed remarkable and enhanced topical retention of oxybenzone for prolonged period of time. It also showed the enhanced sun protection factor compared to the marketed preparation with reduced irritation and toxicity. Atmaram P. Pawar, Aditya P. Gholap, Ashwin B. Kuchekar, C. Bothiraja, and Ashwin J. Mali Copyright © 2015 Atmaram P. Pawar et al. All rights reserved. Formulation and In Vitro Evaluation of Bilayer Tablets of Nebivolol Hydrochloride and Nateglinide for the Treatment of Diabetes and Hypertension Wed, 14 Jan 2015 07:05:49 +0000 Diabetes mellitus (DM) and hypertension are two common diseases that often coexist. The most common cause of death in the diabetic patient is heart disease. In the present investigation we combine Nebivolol and Nateglinide for better patient compliance. IR layer was formulated using various superdisintegrants like Crospovidone, Croscarmellose sodium, and sodium starch glycolate and SR layer was formulated using polymers and gums like HPMC E15, ethyl cellulose, Gaur gum, and Xanthan gum. The disintegration and dissolution study of both layers showed that inclusion of surfactant (sodium lauryl sulphate) to the tablet formulation (IR) and dissolution medium (SR) enhanced the release of drugs from both layers. Kinetic studies of optimized IR layer (NBL8) and SR layer (N9) showed good linearity with regression coefficient of 0.9714 (Higuchi model) and 0.9931 (zero order kinetics), respectively. The above results reveal that the optimized IR layer of Nebivolol (NBL8) and SR layer of Nateglinide (N9) might be suitable for the treatment of diabetes and hypertension by sequential release of the two drugs in a bilayer tablet. IR-immediate release, SR-sustain release, NBL8-Nebivolol 8, N9-Nateglinide 9. Harika Ryakala, S. Dineshmohan, Alluri Ramesh, and V. R. M. Gupta Copyright © 2015 Harika Ryakala et al. All rights reserved. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy Thu, 01 Jan 2015 09:43:05 +0000 Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG), whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM) and scanning tunneling microscopy (STM), this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles. Shawn Riechers, Qian Zhong, Nai-Ning Yin, Arpad Karsai, Sandro R. P. da Rocha, and Gang-yu Liu Copyright © 2015 Shawn Riechers et al. All rights reserved. Tumor Angiogenesis Therapy Using Targeted Delivery of Paclitaxel to the Vasculature of Breast Cancer Metastases Sun, 07 Dec 2014 07:13:48 +0000 Breast cancer aberrantly expresses tissue factor (TF) in cancer tissues and cancer vascular endothelial cells (VECs). TF plays a central role in cancer angiogenesis, growth, and metastasis and, as such, is a target for therapy and drug delivery. TF is the cognate receptor of factor VIIa (fVIIa). We have coupled PTX (paclitaxel, also named Taxol) with a tripeptide, phenylalanine-phenylalanine-arginine chloromethyl ketone (FFRck) and conjugated it with fVIIa. The key aim of the work is to evaluate the antiangiogenic effects of PTX-FFRck-fVIIa against a PTX-resistant breast cancer cell line. Matrigel mixed with VEGF and MDA-231 was injected subcutaneously into the flank of athymic nude mice. Animals were treated by tail vein injection of the PTX-FFRck-fVIIa conjugate, unconjugated PTX, or PBS. The PTX-FFRck-fVIIa conjugate significantly reduces microvessel density in matrigel () compared to PBS and unconjugated PTX. The breast cancer lung metastasis model in athymic nude mice was developed by intravenous injection of MDA-231 cells expressing luciferase. Animals were similarly treated intravenously with the PTX-FFRck-fVIIa conjugate or PBS. The conjugate significantly inhibits lung metastasis as compared to the control, highlighting its potential to antagonize angiogenesis in metastatic carcinoma. In conclusion, PTX conjugated to fVIIa is a promising therapeutic approach for improving selective drug delivery and inhibiting angiogenesis. Shijun Zhu, Walter Kisiel, Yang J. Lu, Lars C. Petersen, John M. Ndungu, Terry W. Moore, Ernest T. Parker, Aiming Sun, Dennis C. Liotta, Bassel F. El-Rayes, Daniel J. Brat, James P. Snyder, and Mamoru Shoji Copyright © 2014 Shijun Zhu et al. All rights reserved.