Journal of Diabetes Research
 Journal metrics
See full report
Acceptance rate10%
Submission to final decision119 days
Acceptance to publication19 days
CiteScore7.100
Journal Citation Indicator0.760
Impact Factor4.3

The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis

Read the full article

 Journal profile

Journal of Diabetes Research publishes articles related to type 1 and type 2 diabetes. Topics include etiology, pathogenesis, management, and prevention of diabetes, as well as associated complications such as nephropathy.

 Editor spotlight

Chief Editor Dr Mark Yorek, from the University of Iowa, is currently researching vascular and neural disease related to obesity and diabetes. His active research studies focus on etiology, treatment and prevention of nerve damage.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Review Article

Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Intima-Media Thickness: Systematic Review and Meta-Analysis

Background. Beyond glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been proposed to reduce the risk of cardiovascular events. The aim of the present systematic review and meta-analysis is to demonstrate the effects of GLP-1 RA and SGLT2is on intima-media thickness (IMT). Methods. PubMed, EMBASE, Web of Science, SCOPUS, and Google Scholar databases were searched from inception to September 9, 2023. All interventional and observational studies that provided data on the effects of GLP-1 RAs or SGLT2is on IMT were included. Critical appraisal was performed using the Joanna Briggs Institute checklists. IMT changes (preintervention and postintervention) were pooled and meta-analyzed using a random-effects model. Subgroup analyses were based on type of medication (GLP-1 RA: liraglutide and exenatide; SGLT2i: empagliflozin, ipragliflozin, tofogliflozin, and dapagliflozin), randomized clinical trials (RCTs), and diabetic patients. Results. The literature search yielded 708 related articles after duplicates were removed. Eighteen studies examined the effects of GLP-1 RA, and eleven examined the effects of SGLT2i. GLP-1 RA and SGLT2i significantly decreased IMT (, 95% CI (-0.170, -0.076), , and , 95% CI (-0.092, -0.004), , , respectively). Metaregression showed that IMT change correlated with baseline IMT, whereas it did not correlate with gender, duration of diabetes, and duration of treatment. Conclusions. Treatment with GLP-1 RA and SGLT2i can lower IMT in diabetic patients, and GLP-1 RA may be more effective than SGLT2i.

Research Article

Identification and Validation of the Pyroptosis-Related Hub Gene Signature and the Associated Regulation Axis in Diabetic Keratopathy

Background. Diabetic keratopathy (DK) poses a significant challenge in diabetes mellitus, yet its molecular pathways and effective treatments remain elusive. The aim of our research was to explore the pyroptosis-related genes in the corneal epithelium of the streptozocin-induced diabetic rats. Methods. After sixteen weeks of streptozocin intraperitoneal injection, corneal epithelium from three diabetic rats and three normal groups underwent whole-transcriptome sequencing. An integrated bioinformatics pipeline, including differentially expressed gene (DEG) identification, enrichment analysis, protein-protein interaction (PPI) network, coexpression, drug prediction, and immune deconvolution analyses, identified hub genes and key drivers in DK pathogenesis. These hub genes were subsequently validated in vivo through RT-qPCR. Results. A total of 459 DEGs were screened out from the diabetic group and nondiabetic controls. Gene Set Enrichment Analysis highlighted significant enrichment of the NOD-like receptor, Toll-like receptor, and NF-kappa B signaling pathways. Intersection of DEGs and pyroptosis-related datasets showed 33 differentially expressed pyroptosis-related genes (DEPRGs) associated with pathways such as IL-17, NOD-like receptor, TNF, and Toll-like receptor signaling. A competing endogenous RNA network comprising 16 DEPRGs, 22 lncRNAs, 13 miRNAs, and 3 circRNAs was constructed. After PPI network, five hub genes (Nfkb1, Casp8, Traf6, Ptgs2, and Il18) were identified as upregulated in the diabetic group, and their expression was validated by RT-qPCR in streptozocin-induced rats. Immune infiltration characterization showed that diabetic corneas owned a higher proportion of resting mast cells, activated NK cells, and memory-resting CD4 T cells. Finally, several small compounds including all-trans-retinoic acid, Chaihu Shugan San, dexamethasone, and resveratrol were suggested as potential therapies targeting these hub genes for DK. Conclusions. The identified and validated hub genes, Nfkb1, Casp8, Traf6, Ptgs2, and Il18, may play crucial roles in DK pathogenesis and serve as therapeutic targets.

Research Article

Jian-Pi-Gu-Shen-Hua-Yu Decoction Alleviated Diabetic Nephropathy in Mice through Reducing Ferroptosis

Background. Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. Purpose. The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. Materials and Methods. We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. Results. The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. Conclusion. JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.

Research Article

Does Treatment with Sodium-Glucose Cotransporter-2 Inhibitors Affect Adherence to International Society Criteria for Diabetic Ketoacidosis in Adult Patients with Type 2 Diabetes? A Retrospective Cohort Analysis

Objective(s). Diabetic ketoacidosis (DKA) is a rare but well-known complication of sodium-glucose transporter inhibitor (SGLT2i) treatment in patients with type 2 diabetes. The physiological effects of SGLT2i are such that hyperglycaemia and ketonuria are no longer reliable diagnostic tools in patients treated with this class of medication. Diagnostic criteria for DKA varies between major society guidelines. The Joint British Diabetes Society (JBDS) and American Association of Clinical Endocrinology/American College of Endocrinology (AACE/ACE) have recently made changes to their diagnostic criteria to account for the effects of SGTL2i. This study sought to investigate whether treatment with SGLT2i might result in overdiagnosis of DKA and less adherence to the international diagnostic guidelines in hospitalised patients with type 2 diabetes treated with SGLT2i. Additionally, the demographics and clinical characteristics of patients with type 2 diabetes presenting with DKA were compared based on their treatment with SGLT2i at the time of diagnosis. Design. Retrospective observational study. Setting. Inpatients at two teaching hospitals in Queensland, Australia. Primary Outcome Measure(s). The number of patients meeting the Joint British Diabetes Society (JBDS) and American Association of Clinical Endocrinology/American College of Endocrinology (AACE/ACE) diagnostic criteria for DKA. Patients were divided into two groups by treatment with SGLT2i at the time of diagnosis. Participants. Adult patients (>18 years old) with type 2 diabetes diagnosed with DKA from April 2015 to January 2022. Patients without type 2 diabetes were excluded. Results. One hundred and sixty-five patients were included in this study—comprising 94 patients in the SGLT2i cohort and 70 in the non-SGLT2i cohort. A significantly smaller proportion of patients in the SGLT2i vs. non-SGLT2i cohorts met both JBDS (56% vs. 72%, ) and AACE/ACE (63% vs. 82%, ) criteria for diagnosis of DKA. Conclusion. Patients with type 2 diabetes treated with SGLT2i may be more likely to be diagnosed with DKA despite not meeting the criteria. Despite recent adjustments to account the physiological effects of SGLT2i, significant variation in criteria between major society guidelines presents ongoing challenges to clinicians. The proportion of patients diagnosed using both JDBS and AACE/ACE were comparable, suggesting a reasonable degree of agreement.

Research Article

Beneficial Effects of Ursodeoxycholic Acid on Metabolic Parameters and Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind, Placebo-Controlled Clinical Study

Background. Oxidative stress and inflammation are closely related pathophysiological processes, both occurring in type 2 diabetes mellitus (T2DM). In addition to the standard treatment of T2DM, a potential strategy has been focused on the use of bile acids (BAs) as an additional treatment. Ursodeoxycholic acid (UDCA), as the first BA used in humans, improves glucose and lipid metabolism and attenuates oxidative stress. The aim of this study was to evaluate the potential metabolic, anti-inflammatory, and antioxidative effects of UDCA in patients with T2DM. Methods. This prospective, double-blind, placebo-controlled clinical study included 60 patients with T2DM, randomly allocated to receive UDCA or placebo. Subjects were treated with 500 mg tablets of UDCA or placebo administered three times per day (total dose of 1500 mg/day) for eight weeks. Two study visits, at the beginning (F0) and at the end (F1) of the study, included the interview, anthropometric and clinical measurements, and biochemical analyses. Results. UDCA treatment showed a significant reduction in body mass index () and in diastolic blood pressure (), compared to placebo. In addition, there was a statistically significant difference in waist circumference in the UDCA group before and after treatment (). Although no statistical significance was observed at the two-month follow-up assessment, an average decrease in glucose levels in the UDCA group was observed. After two months of the intervention period, a significant decrease in the activity of liver enzymes was noticed. Furthermore, a significant reduction in prooxidative parameters (TBARS, NO2-, H2O2) and significant elevation in antioxidative parameters such as SOD and GSH were found (). Conclusions. The eight-week UDCA administration showed beneficial effects on metabolic and oxidative stress parameters in patients with T2DM. Thus, UDCA could attenuate the progression and complications of diabetes and should be considered as an adjuvant to other diabetes treatment modalities. This trial is registered with NCT05416580.

Review Article

Exosomes as Emerging Regulators of Immune Responses in Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by high blood glucose levels resulting from insulin resistance and impaired insulin secretion. Immune dysregulation-mediated chronic low-grade inflammation is a critical factor that poses a significant risk to the metabolic disorders of T2DM and its related complications. Exosomes, as small extracellular vesicles secreted by various cells, have emerged as essential regulators of intercellular communication and immune regulation. In this review, we summarize the current understanding of the role of exosomes derived from immune and nonimmune cells in modulating immune responses in T2DM by regulating immune cell functions and cytokine production. More importantly, we suggest potential strategies for the clinical applications of exosomes in T2DM management, including biomarkers for disease diagnosis and monitoring, exosome-based therapies for drug delivery vehicles, and targeted therapy for exosomes.

Journal of Diabetes Research
 Journal metrics
See full report
Acceptance rate10%
Submission to final decision119 days
Acceptance to publication19 days
CiteScore7.100
Journal Citation Indicator0.760
Impact Factor4.3
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.