Table of Contents Author Guidelines Submit a Manuscript
International Journal of Experimental Diabetes Research
Volume 1 (2000), Issue 4, Pages 275-287
http://dx.doi.org/10.1155/EDR.2000.275

Evidence for Mechanistic Alterations of Ca2+ Homeostasis in Type 2 Diabetes Mellitus

1Center for Biotechnology, Anna University, Chennai 600025, India
2Madras Diabetes Research Foundation, Gopalapuram, Chennai 600086, India
3Madras Diabetes Research Foundation (MDRF), 35, Conran Smith Road, Gopalapuram, Chennai 600086, India

Received 8 November 1999; Accepted 17 June 2000

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Altered cytosolic Ca2+ is implicated in the aetiology of many diseases including diabetes but there are few studies on the mechanism(s) of the altered Ca2+ regulation. Using human lymphocytes, we studied cytosolic calcium (Cai) and various Ca2+ transport mechanisms in subjects with Type 2 diabetes mellitus and control subjects. Ca2+-specific fluorescent probes (Fura-2 and Fluo-3) were used to monitor the Ca2+ signals. Thapsigargin, a potent and specific inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), was used to study Ca2+- store dependent Ca2+ fluxes. Significant (P < 0.05) elevation of basal Cai levels was observed in lymphocytes from diabetic subjects. Cai levels were positively correlated with fasting, plasma glucose and HbAlc. There was also a significant (P < 0.05) reduction in plasma membrane calcium (PMCA) ATPase activity in diabetic subjects compared to controls. Cells from Type 2 diabetics exhibited an increased Ca2+ influx (as measured both by Fluo-3 fliorescence and C45a assays) as a consequence of of thapsigargin-mediated Ca2+ store depletion. Upon addition of Mn2+ (a surrogate of Ca2+), the fura-2 fluorescence decayed in an exponential fashion and the rate and extent of this decline was steeper and greater in cells from type 2 diabetic patients. There was also a significant (P < 0.05) difference in the Na+/Ca2+ exchange activity in Type 2 diabetic patients, both under resting conditions and after challenging the cells with thapsigargin, when the internal store Ca2+ sequestration was circumvented. Pharmacological activation of protein kinase C (PKC) in cells from patients resulted in only partial inhibition of Ca2+ entry. We conclude that cellular Ca2+ accumulation in cells from Type 2 diabetes results from (a) reduction in PMCA ATPase activity, (b) modulation of Na+/Ca2+ exchange and (3) increased Ca2+ influx across the plasma membrane.