Table of Contents Author Guidelines Submit a Manuscript
International Journal of Experimental Diabetes Research
Volume 2, Issue 4, Pages 299-319

Albert Renold Memorial Lecture: Molecular Background of Nutritionally Induced Insulin Resistance Leading to Type 2 Diabetes – From Animal Models to Humans

Department of Biochemistry, Hadassah University, Hospital and Hebrew University-Hadassah, Medical School, Jerusalem, Israel

Copyright © 2001 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Albert Renold strived to gain insight into the abnormalities of human diabetes by defining the pathophysiology of the disease peculiar to a given animal. He investigated the Israeli desert-derived spiny mice (Acomys cahirinus), which became obese on fat-rich seed diet. After a few months hyperplasia and hypertrophy of β-cells occurred leading to a sudden rupture, insulin loss and ketosis. Spiny mice were low insulin responders, which is probably a characteristic of certain desert animals, protecting against insulin oversecretion when placed on an abundant diet. We have compared the response to overstimulation of several mutant diabetic species and nutritionally induced nonmutant animals when placed on affluent diet. Some endowed with resilient β-cells sustain long-lasting oversecretion, compensating for the insulin resistance, without lapsing into overt diabetes. Some with labile beta cells exhibit apoptosis and lose their capacity of coping with insulin resistance after a relatively short period. The wide spectrum of response to insulin resistance among different diabetes prone species seems to represent the varying response of human beta cells among the populations. In search for the molecular background of insulin resistance resulting from overnutrition we have studied the Israeli desert gerbil Psammomys obesus (sand rat), which progresses through hyperinsulinemia, followed by hyperglycemia and irreversible beta cell loss. Insulin resistance was found to be the outcome of reduced activation of muscle insulin receptor tyrosine kinase by insulin, in association with diminished GLUT4 protein and DNA content and overexpression of PKC isoenzymes, notably of PKCε. This overexpression and translocation to the membrane was discernible even prior to hyperinsulinemia and may reflect the propensity to diabetes in nondiabetic species and represent a marker for preventive action. By promoting the phosphorylation of serine/threonine residues on certain proteins of the insulin signaling pathway, PKCε exerts a negative feedback on insulin action. PKCε was also found to attenuate the activity of PKB and to promote the degradation of insulin receptor, as determined by co-incubation in HEK 293 cells. PKCε overexpression was related to the rise in muscle diacylglycerol and lipid content, which are prevalent on lascivious nutrition especially if fat-rich. Thus, Psammomys illustrates the probable antecedents of the development of worldwide diabetes epidemic in human populations emerging from food scarcity to nutritional affluence, inappriopriate to their metabolic capacity.