Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2008 (2008), Article ID 697035, 8 pages
http://dx.doi.org/10.1155/2008/697035
Research Article

Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus

1Division of Biomedical Genetics, Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
2Netherlands Metabolomics Centre, location Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
3Division Laboratories and Pharmacy, Department of Endocrinology, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
4Department of Experimental Medical Sciences, Lund University, BMC, C 12, S-221 84 Lund, Sweden
5Division of Medical Biology, Department of Pathology and Laboratory Medicine, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
6Department of Clinical Sciences, Lund University, BMC, C 12, S-221 84 Lund, Sweden

Received 9 October 2007; Revised 30 January 2008; Accepted 14 February 2008

Academic Editor: Hiroshi Okamoto

Copyright © 2008 J. W. M. Höppener et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O'Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 11, 3881 pages, 1987. View at Publisher · View at Google Scholar
  2. S. E. Kahn, S. Andrikopoulos, and C. B. Verchere, “Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes,” Diabetes, vol. 48, no. 2, 241 pages, 1999. View at Publisher · View at Google Scholar
  3. J. W. M. Höppener, B. Ahrén, and C. J. M. Lips, “Islet amyloid and type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 343, no. 6, 411 pages, 2000. View at Publisher · View at Google Scholar
  4. P. Westermark, “Fine structure of islets of Langerhans in insular amyloidosis,” Virchows Archiv, vol. 359, no. 1, 1 pages, 1973. View at Publisher · View at Google Scholar
  5. A. Clark, C. A. Wells, I. D. Buley et al., “Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes,” Diabetes Research, vol. 9, no. 4, 151 pages, 1988. View at Google Scholar
  6. C. J. Rhodes, “Type 2 diabetes-a matter of β-cell life and death?” Science, vol. 307, no. 5708, 380 pages, 2005. View at Publisher · View at Google Scholar
  7. M. German, L. G. Moss, J. Wang, and W. J. Rutter, “The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical B-cell nuclear complexes,” Molecular Cell Biology, vol. 12, no. 4, 1777 pages, 1992. View at Google Scholar
  8. A. Lorenzo, B. Razzaboni, G. C. Weir, and B. A. Yankner, “Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus,” Nature, vol. 368, no. 6473, 756 pages, 1994. View at Publisher · View at Google Scholar
  9. J. Janson, R. H. Ashley, D. Harrison, S. McIntyre, and P. C. Butler, “The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles,” Diabetes, vol. 48, no. 3, 491 pages, 1999. View at Publisher · View at Google Scholar
  10. J. W. M. Höppener and C. J. M. Lips, “Role of islet amyloid in type 2 diabetes mellitus,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, 726 pages, 2006. View at Publisher · View at Google Scholar
  11. J. S. Jacobsen, C.-C. Wu, J. M. Redwine et al., “Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, 5161 pages, 2006. View at Publisher · View at Google Scholar
  12. A. E. Butler, J. Janson, W. C. Soeller, and P. C. Butler, “Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid,” Diabetes, vol. 52, no. 9, 2304 pages, 2003. View at Publisher · View at Google Scholar
  13. M. Bucciantini, G. Calloni, F. Chiti et al., “Prefibrillar amyloid protein aggregates share common features of cytotoxicity,” Journal of Biological Chemistry, vol. 279, no. 30, 31374 pages, 2004. View at Publisher · View at Google Scholar
  14. R. Kayed, E. Head, J. L. Thompson et al., “Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis,” Science, vol. 300, no. 5618, 486 pages, 2003. View at Publisher · View at Google Scholar
  15. J. W. M. Höppener, J. S. Verbeek, E. J. P. de Koning et al., “Chronic overproduction of islet amyloid polypeptide/amylin in transgenic mice: lysosomal localization of human islet amyloid polypeptide and lack of marked hyperglycaemia or hyperinsulinaemia,” Diabetologia, vol. 36, no. 12, 1258 pages, 1993. View at Publisher · View at Google Scholar
  16. K. L. van Hulst, W. Born, R. Muff et al., “Biologically active human islet amyloid polypeptide/amylin in transgenic mice,” European Journal of Endocrinology, vol. 136, no. 1, 107 pages, 1997. View at Google Scholar
  17. B. Ahrén, C. Oosterwijk, C. J. M. Lips, and J. W. M. Höppener, “Transgenic overexpression of human islet amyloid polypeptide inhibits insulin secretion and glucose elimination after gastric glucose gavage in mice,” Diabetologia, vol. 41, no. 11, 1374 pages, 1998. View at Publisher · View at Google Scholar
  18. J. W. M. Höppener, C. Oosterwijk, M. G. Nieuwenhuis et al., “Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model,” Diabetologia, vol. 42, no. 4, 427 pages, 1999. View at Publisher · View at Google Scholar
  19. R. S. Surwit, C. M. Kuhn, C. Cochrane, J. A. McCubbin, and M. N. Feinglos, “Diet-induced type II diabetes in C57BL/6J mice,” Diabetes, vol. 37, no. 9, 1163 pages, 1988. View at Publisher · View at Google Scholar
  20. B. Ahrén, E. Simonsson, A. J. W. Scheurink, H. Mulder, U. Myrsén, and F. Sundler, “Dissociated insulinotropic sensitivity to glucose and carbachol in high-fat diet-induced insulin resistance in C57 BL/6J mice,” Metabolism, vol. 46, no. 1, 97 pages, 1997. View at Publisher · View at Google Scholar
  21. C. B. Verchere, D. A. D'Alessio, R. D. Palmiter et al., “Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic ß-cell expression of human islet amyloid polypeptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 8, 3492 pages, 1996. View at Publisher · View at Google Scholar
  22. K. L. van Hulst, W. H. L. Hackeng, J. W. M. Höppener et al., “An improved method for the determination of islet amyloid polypeptide levels in plasma,” Annals of Clinical Biochemistry, vol. 31, no. 2, 165 pages, 1994. View at Google Scholar
  23. H. Mulder, B. Ahrén, M. Stridsberg, and F. Sundler, “Non-parallelism of islet amyloid polypeptide (amylin) and insulin gene expression in rat islets following dexamethasone treatment,” Diabetologia, vol. 38, no. 4, 395 pages, 1995. View at Publisher · View at Google Scholar
  24. B. Thorens, H. K. Sarkar, H. R. Kaback, and H. F. Lodish, “Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells,” Cell, vol. 55, no. 2, 281 pages, 1988. View at Publisher · View at Google Scholar
  25. H. Y. Wong, B. Ahrén, C. J. M. Lips, J. W. M. Höppener, and F. Sundler, “Postnatally disturbed pancreatic islet cell distribution in human islet amyloid polypeptide transgenic mice,” Regulatory Peptides, vol. 113, no. 1–3, 89 pages, 2003. View at Publisher · View at Google Scholar
  26. N. Wierup, M. J. Kuhar, B. O. Nilsson, H. Mulder, E. Ekblad, and F. Sundler, “Cocaine- and amphetamine-regulated transcript (CART) is expressed in several islet cell types during rat development,” Journal of Histochemistry & Cytochemistry, vol. 52, no. 2, 169 pages, 2004. View at Google Scholar
  27. B. J. de Haan, M. M. Faas, H. Spijker, J. W. van Willigen, A. de Haan, and P. de Vos, “Factors influencing isolation of functional pancreatic rat islets,” Pancreas, vol. 29, no. 1, e15 pages, 2004. View at Publisher · View at Google Scholar
  28. P. T. R. van Suylichem, G. H. J. Wolters, and R. van Schilfgaarde, “The efficacy of density gradients for islet purification: a comparison of seven density gradients,” Transplant International, vol. 3, no. 3, 156 pages, 1990. View at Publisher · View at Google Scholar
  29. W. C. Soeller, J. Janson, S. E. Hart et al., “Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide,” Diabetes, vol. 47, no. 5, 743 pages, 1998. View at Publisher · View at Google Scholar
  30. M. Couce, L. A. Kane, T. D. O'Brien et al., “Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and ß-cell dysfunction,” Diabetes, vol. 45, no. 8, 1094 pages, 1996. View at Publisher · View at Google Scholar
  31. E. J. P. de Koning, E. R. Morris, F. M. A. Hofhuis et al., “Intra- and extracellular amyloid fibrils are formed in cultured pancreatic islets of transgenic mice expressing human islet amyloid polypeptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 18, 8467 pages, 1994. View at Publisher · View at Google Scholar
  32. B. Ahrén and A. J. W. Scheurink, “Marked hyperleptinemia after high-fat diet associated with severe glucose intolerance in mice,” European Journal of Endocrinology, vol. 139, no. 4, 461 pages, 1998. View at Publisher · View at Google Scholar
  33. B. Ahrén, “Diurnal variation in circulating leptin is dependent on gender, food intake and circulating insulin in mice,” Acta Physiologica Scandinavica, vol. 169, no. 4, 325 pages, 2000. View at Publisher · View at Google Scholar
  34. H. Ohsawa, A. Kanatsuka, T. Yamaguchi, H. Makino, and S. Yoshida, “Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets,” Biochemical and Biophysical Research Communications, vol. 160, no. 2, 961 pages, 1989. View at Publisher · View at Google Scholar
  35. A. Ar'Rajab and B. Ahrén, “Effects of amidated rat islet amyloid polypeptide on glucose-stimulated insulin secretion in vivo and in vitro in rats,” European Journal of Pharmacology, vol. 192, no. 3, 443 pages, 1991. View at Publisher · View at Google Scholar
  36. B. Leighton and G. J. Cooper, “Pancreatic amylin and calcitonin gene-releted peptide cause resistance to insulin in skeletal muscle in vitro,” Nature, vol. 335, no. 6191, 632 pages, 1988. View at Publisher · View at Google Scholar
  37. R. O. Deems, R. W. Deacon, and D. A. Young, “Amylin activates glycogen phosphorylase and inactivates glycogen synthase via a cAMP-independent mechanism,” Biochemical and Biophysical Research Communications, vol. 174, no. 2, 716 pages, 1991. View at Publisher · View at Google Scholar
  38. J. M. Molina, G. J. S. Cooper, B. Leighton, and J. M. Olefsky, “Induction of insulin resistance in vivo by amylin and calcitonin gene-related peptide,” Diabetes, vol. 39, no. 2, 260 pages, 1990. View at Publisher · View at Google Scholar
  39. J. P. H. Wilding, N. Khandan-Nia, W. M. Bennet et al., “Lack of acute effect of amylin (islet associated polypeptide) on insulin sensitivity during hyperinsulinaemic euglycaemic clamp in humans,” Diabetologia, vol. 37, no. 2, 166 pages, 1994. View at Publisher · View at Google Scholar
  40. T. P. Ciaraldi, M. Goldberg, R. Odom, and M. Stolpe, “In vivo effects of amylin on carbohydrate metabolism in liver cells,” Diabetes, vol. 41, no. 8, 975 pages, 1992. View at Publisher · View at Google Scholar
  41. T. W. Stephens, W. F. Heath, and R. N. Hermeling, “Presence of liver CGRP/amylin receptors in only nonparenchymal cells and absence of direct regulation of rat liver glucose metabolism by CGRP/amylin,” Diabetes, vol. 40, no. 3, 395 pages, 1991. View at Publisher · View at Google Scholar
  42. B. Thorens, “Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter,” International Review of Cytology, vol. 137, 209 pages, 1992. View at Google Scholar
  43. E. J. P. de Koning, J. J. G. van den Brand, V. L. Mott et al., “Macrophages and pancreatic islet amyloidosis,” Amyloid, vol. 5, no. 4, 247 pages, 1998. View at Google Scholar