Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2008, Article ID 865850, 12 pages
http://dx.doi.org/10.1155/2008/865850
Methodology Report

Real-Time Monitoring of Apoptosis by Caspase-3-Like Protease Induced FRET Reduction Triggered by Amyloid Aggregation

1Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
2Division of Cell Biology, Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
3The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, 17176 Stockholm, Sweden

Received 31 January 2008; Accepted 23 April 2008

Academic Editor: Per Westermark

Copyright © 2008 Johan F. Paulsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Bukau, J. Weissman, and A. Horwich, “Molecular chaperones and protein quality control,” Cell, vol. 125, no. 3, pp. 443–451, 2006. View at Publisher · View at Google Scholar
  2. E. D. Eanes and G. G. Glenner, “X-ray diffraction studies on amyloid filaments,” Journal of Histochemistry & Cytochemistry, vol. 16, no. 11, pp. 673–677, 1968. View at Google Scholar
  3. G. G. Glenner, “Amyloid deposits and amyloidosis. The beta-fibrilloses (first of two parts),” The New England Journal of Medicine, vol. 302, no. 23, pp. 1283–1292, 1980. View at Google Scholar
  4. P. Westermark, M. D Benson, J. N. Buxbaum et al., “Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis,” Amyloid, vol. 12, no. 1, pp. 1–4, 2005. View at Google Scholar
  5. H. Puchtler, F. Sweat, and J. G. Kuhns, “On the binding of direct cotton dyes by amyloid,” Journal of Histochemistry & Cytochemistry, vol. 12, no. 12, pp. 900–907, 1964. View at Google Scholar
  6. J. T. Jarrett and P. T. Lansbury Jr., “Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?” Cell, vol. 73, no. 6, pp. 1055–1058, 1993. View at Publisher · View at Google Scholar
  7. P. Westermark, “Aspects on human amyloid forms and their fibril polypeptides,” FEBS Journal, vol. 272, no. 23, pp. 5942–5949, 2005. View at Publisher · View at Google Scholar
  8. N. Arispe, E. Rojas, and H. B. Pollard, “Alzheimer disease amyloid β protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 567–571, 1993. View at Publisher · View at Google Scholar
  9. B. Caughey and P. T. Lansbury, “Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders,” Annual Review of Neuroscience, vol. 26, pp. 267–298, 2003. View at Publisher · View at Google Scholar
  10. A. Quist, I. Doudevski, H. Lin et al., “Amyloid ion channels: a common structural link for protein-misfolding disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10427–10432, 2005. View at Publisher · View at Google Scholar
  11. P. Westermark, C. Wernstedt, E. Wilander, and K. Sletten, “A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas,” Biochemical and Biophysical Research Communications, vol. 140, no. 3, pp. 827–831, 1986. View at Publisher · View at Google Scholar
  12. P. Westermark, E. Wilander, G. T. Westermark, and K. H. Johnson, “Islet amyloid polypeptide-like immunoreactivity in the islet B cells of type 2 (non-insulin-dependent) diabetic and non-diabetic individuals,” Diabetologia, vol. 30, no. 11, pp. 887–892, 1987. View at Google Scholar
  13. P. Westermark and L. Grimelius, “The pancreatic islet cells in insular amyloidosis in human diabetic and non-diabetic adults,” Acta Pathologica et Microbiologica Scandinavica A, vol. 81, no. 3, pp. 291–300, 1973. View at Google Scholar
  14. A. Clark, C. A. Wells, I. D. Buley et al., “Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes,” Diabetes Research, vol. 9, no. 4, pp. 151–159, 1988. View at Google Scholar
  15. A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza, and P. C. Butler, “β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes,” Diabetes, vol. 52, no. 1, pp. 102–110, 2003. View at Publisher · View at Google Scholar
  16. T. A. Mirzabekov, M. C. Lin, and B. L. Kagan, “Pore formation by the cytotoxic islet amyloid peptide amylin,” Journal of Biological Chemistry, vol. 271, no. 4, pp. 1988–1992, 1996. View at Publisher · View at Google Scholar
  17. J. Janson, R. H. Ashley, D. Harrison, S. McIntyre, and P. C. Butler, “The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles,” Diabetes, vol. 48, no. 3, pp. 491–498, 1999. View at Publisher · View at Google Scholar
  18. M. Anguiano, R. J. Nowak, and P. T. Lansbury Jr., “Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes,” Biochemistry, vol. 41, no. 38, pp. 11338–11343, 2002. View at Publisher · View at Google Scholar
  19. L. Rumora, M. Hadzija, K. Barisic, D. Maysinger, and T. Z. Grubiic, “Amylin-induced cytotoxicity is associated with activation of caspase-3 and MAP kinases,” Journal of Biological Chemistry, vol. 383, no. 11, pp. 1751–1758, 2002. View at Publisher · View at Google Scholar
  20. S Zhang, J. Liu, M. Dragunow, and G. J. Cooper, “Fibrillogenic amylin evokes islet β-cell apoptosis through linked activation of a caspase cascade and JNK1,” Journal of Biological Chemistry, vol. 278, no. 52, pp. 52810–52819, 2003. View at Publisher · View at Google Scholar
  21. A. Lorenzo, B. Razzaboni, G. C. Weir, and B. A. Yankner, “Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus,” Nature, vol. 368, no. 6473, pp. 756–760, 1994. View at Publisher · View at Google Scholar
  22. T. Sanke, G. I. Bell, C. Sample, A. H. Rubenstein, and D. F. Steiner, “An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing,” Journal of Biological Chemistry, vol. 263, no. 33, pp. 17243–17246, 1988. View at Google Scholar
  23. M. K. Badman, K. I. Shennan, J. L. Jermany, K. Docherty, and A. Clark, “Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2,” FEBS Letters, vol. 378, no. 3, pp. 227–231, 1996. View at Publisher · View at Google Scholar
  24. C. E. Higham, R. L. Hull, L. Lawrie et al., “Processing of synthetic pro-islet amyloid polypeptide (proIAPP) ‘amylin’ by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro,” European Journal of Biochemistry, vol. 267, no. 16, pp. 4998–5004, 2000. View at Publisher · View at Google Scholar
  25. L. Marzban, G. Trigo-Gonzalez, X. Zhu et al., “Role of ß-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide,” Diabetes, vol. 53, no. 1, pp. 141–148, 2004. View at Publisher · View at Google Scholar
  26. J. F. Paulsson and G. T. Westermark, “Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation,” Diabetes, vol. 54, no. 7, pp. 2117–2125, 2005. View at Publisher · View at Google Scholar
  27. L. Marzban, C. J. Rhodes, D. F. Steiner, L. Haataja, P. A. Halban, and C. B. Verchere, “Impaired NH2-terminal processing of human pro-islet amyloid polypeptide by the prohormone convertase PC2 leads to amyloid formation and cell death,” Diabetes, vol. 55, no. 8, pp. 2192–2201, 2006. View at Publisher · View at Google Scholar
  28. J. F. Paulsson, A. Andersson, P. Westermark, and G. T. Westermark, “Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human,” Diabetologia, vol. 49, no. 6, pp. 1237–1246, 2006. View at Publisher · View at Google Scholar
  29. M. Köhler, S. V. Zaitsev, I. I. Zaitseva et al., “On-line monitoring of apoptosis in insulin-secreting cells,” Diabetes, vol. 52, no. 12, pp. 2943–2950, 2003. View at Publisher · View at Google Scholar
  30. H. Schägger and G. von Jagow, “Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa,” Analytical Biochemistry, vol. 166, no. 2, pp. 368–379, 1987. View at Publisher · View at Google Scholar
  31. G. T. Westermark, S. Gebre-Medhin, D. F. Steiner, and P. Westermark, “Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP,” Molecular Medicine, vol. 6, no. 12, pp. 998–1007, 2000. View at Google Scholar
  32. P. Westermark, Z. C. Li, G. T. Westermark, A. Leckström, and D. F. Steiner, “Effects of beta cell granule components on human islet amyloid polypeptide fibril formation,” FEBS Letters, vol. 379, no. 3, pp. 203–206, 1996. View at Publisher · View at Google Scholar
  33. E. T. Jaikaran, M. R. Nilsson, and A. Clark, “Pancreatic β-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation,” Biochemical Journal, vol. 377, pp. 709–716, 2004. View at Publisher · View at Google Scholar
  34. R. Kayed, E. Head, J. L. Thompson et al., “Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis,” Science, vol. 300, no. 5618, pp. 486–489, 2003. View at Publisher · View at Google Scholar
  35. C. G. Glabe and R. Kayed, “Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis,” Neurology, vol. 66, supplement 1, no. 2, pp. S74–S78, 2006. View at Google Scholar
  36. A. E. Butler, J. Janson, W. C. Soeller, and P. C. Butler, “Increased β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes,” Diabetes, vol. 52, no. 9, pp. 2304–2314, 2003. View at Publisher · View at Google Scholar
  37. J. J. Meier, R. Kayed, C. Y. Lin et al., “Inhibition of human IAPP fibril formation does not prevent ß-cell death: evidence for distinct actions of oligomers and fibrils of human IAPP,” American Journal of Physiology, vol. 291, no. 6, pp. E1317–E1324, 2006. View at Publisher · View at Google Scholar
  38. J. D. Knight and A. D. Miranker, “Phospholipid catalysis of diabetic amyloid assembly,” Journal of Molecular Biology, vol. 341, no. 5, pp. 1175–1187, 2004. View at Publisher · View at Google Scholar