Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2011, Article ID 346051, 5 pages
http://dx.doi.org/10.1155/2011/346051
Research Article

Increased Serum Levels of Uric Acid Are Associated with Sudomotor Dysfunction in Subjects with Type 2 Diabetes Mellitus

1Outpatient Clinic of Obesity, Diabetes, and Metabolism, Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
2Department of Clinical Biochemistry, Vascular Disease Prevention Clinics, Royal Free Hospital, University College London Medical School, University College London (UCL), London NW3 2QG, UK
3Biochemistry Laboratory, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece

Received 17 April 2011; Revised 27 June 2011; Accepted 12 July 2011

Academic Editor: Alexander Kokkinos

Copyright © 2011 N. Papanas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Ziegler, C. P. Zental, S. Perz et al., “Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort study,” Diabetes Care, vol. 31, no. 3, pp. 556–561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. I. Vinik, R. E. Maser, and D. Ziegler, “Neuropathy: the crystal ball for cardiovascular disease?” Diabetes Care, vol. 33, no. 7, pp. 1688–1690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. V. A. Low, P. Sandroni, R. D. Fealey, and P. A. Low, “Detection of small-fiber neuropathy by sudomotor testing,” Muscle and Nerve, vol. 34, no. 1, pp. 57–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Yano, D. M. Reed, and D. L. McGee, “Ten-year incidence of coronary heart disease in the Honolulu heart program. Relationship to biologic and lifestyle characteristics,” American Journal of Epidemiology, vol. 119, no. 5, pp. 653–666, 1984. View at Google Scholar · View at Scopus
  5. D. S. Freedman, D. F. Williamson, E. W. Gunter, and T. Byers, “Relation of serum uric acid to mortality and ischemic heart disease. The NHANES I epidemiologic follow-up study,” American Journal of Epidemiology, vol. 141, no. 7, pp. 637–644, 1995. View at Google Scholar · View at Scopus
  6. J. T. Moriarity, A. R. Folsom, C. Iribarren, F. J. Nieto, and W. D. Rosamond, “Serum uric acid and risk of coronary heart disease: atherosclerosis risk in communities (ARIC) study,” Annals of Epidemiology, vol. 10, no. 3, pp. 136–143, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Fang and M. H. Alderman, “Serum uric acid and cardiovascular mortality: the NHANES I epidemiologic follow-up study, 1971-1992. National health and nutrition examination survey,” JAMA Journal, vol. 283, no. 18, pp. 2404–2410, 2000. View at Google Scholar
  8. A. Mazza, A. C. Pessina, A. Pavei, R. Scarpa, V. Tikhonoff, and E. Casiglia, “Predictors of stroke mortality in elderly people from the general population. The Cardiovascular Study in the ELderly,” European Journal of Epidemiology, vol. 17, no. 12, pp. 1097–1104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Daskalopoulou, V. G. Athyros, M. Elisaf, and D. P. Mikhailidis, “Uric acid levels and vascular disease,” Current Medical Research and Opinion, vol. 20, no. 6, pp. 951–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. N. L. Edwards, “The role of hyperuricemia in vascular disorders,” Current Opinion in Rheumatology, vol. 21, no. 2, pp. 132–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. Milionis, K. J. Kalantzi, J. A. Goudevenos, K. Seferiadis, D. P. Mikhailidis, and M. S. Elisaf, “Serum uric acid levels and risk for acute ischaemic nonembolic stroke in elderly subjects,” Journal of Internal Medicine, vol. 258, no. 5, pp. 435–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Karagiannis, D. P. Mikhailidis, K. Tziomalos et al., “Serum uric acid as an independent predictor of early death after acute stroke,” Circulation Journal, vol. 71, no. 7, pp. 1120–1127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Baker, H. R. Schumacher, and E. Krishnan, “Serum uric acid level and risk for peripheral arterial disease: Analysis of data from the multiple risk factor intervention trial,” Angiology, vol. 58, no. 4, pp. 450–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Shankar, B. E. Klein, F. J. Nieto, and R. Klein, “Association between serum uric acid level and peripheral arterial disease,” Atherosclerosis, vol. 196, no. 2, pp. 749–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Katsiki, V. G. Athyros, A. Karagiannis, and D. P. Mikhailidis, “Hyperuricaemia and non-alcoholic fatty liver disease (nafld): a relationship with implications for vascular risk?” Current Vascular Pharmacology. In press.
  16. A. Papazafiropoulou, N. Tentolouris, I. Moyssakis, D. Perrea, and N. Katsilambros, “The potential effect of some newer risk factors for atherosclerosis on aortic distensibility in subjects with and without type 2 diabetes,” Diabetes Care, vol. 29, no. 8, pp. 1926–1928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Lehto, L. Niskanen, T. Rönnemaa, and M. Laakso, “Serum uric acid is a strong predictor of stroke in patients with noninsulin-dependent diabetes mellitus,” Stroke, vol. 29, no. 3, pp. 635–639, 1998. View at Google Scholar · View at Scopus
  18. C. H. Tseng, “Independent association of uric acid levels with peripheral arterial disease in Taiwanese patients with Type 2 diabetes,” Diabetic Medicine, vol. 21, no. 7, pp. 724–729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Papanas, N. Katsiki, K. Papatheodorou et al., “Peripheral neuropathy is associated with increased serum levels of uric acid in type 2 diabetes mellitus,” Angiology, vol. 62, no. 4, pp. 291–295, 2011. View at Publisher · View at Google Scholar
  20. G. A. Lanza, D. Pitocco, E. P. Navarese et al., “Association between cardiac autonomic dysfunction and inflammation in type 1 diabetic patients: effect of beta-blockade,” European Heart Journal, vol. 28, no. 7, pp. 814–820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L.-L. Huang, C.-T. Huang, M.-L. Chen, and I.-F. Mao, “Effects of profuse sweating induced by exercise on urinary uric acid excretion in a hot environment,” Chinese Journal of Physiology, vol. 53, no. 4, pp. 254–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. S. Daskalopoulou, V. Tzovaras, D. P. Mikhailidis, and M. Elisaf, “Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia,” Current Pharmaceutical Design, vol. 11, no. 32, pp. 4161–4175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. V. G. Athyros, D. P. Mikhailidis, E. N. Liberopoulos et al., “Effect of statin treatment on renal function and serum uric acid levels and their relation to vascular events in patients with coronary heart disease and metabolic syndrome: a subgroup analysis of the GREek atorvastatin and coronary heart disease evaluation (GREACE) study,” Nephrology Dialysis Transplantation, vol. 22, no. 1, pp. 118–127, 2007. View at Publisher · View at Google Scholar
  24. V. G. Athyros, M. Elisaf, A. A. Papageorgiou et al., “Effect of statins versus untreated dyslipidemia on serum uric acid levels in patients with coronary heart disease: a subgroup analysis of the GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study,” American Journal of Kidney Diseases, vol. 43, no. 4, pp. 589–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Papanas, K. Papatheodorou, D. Christakidis et al., “Evaluation of a new indicator test for sudomotor function (Neuropad®) in the diagnosis of peripheral neuropathy in type 2 diabetic patients,” Experimental and Clinical Endocrinology and Diabetes, vol. 113, no. 4, pp. 195–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Papanas and D. Ziegler, “New diagnostic tests for diabetic distal symmetric polyneuropathy,” Journal of Diabetes and its Complications, vol. 25, no. 1, pp. 44–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Joint National Committee, “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Blackburn, A. Keys, E. Simonson, P. Rantaharju, and S. Punsar, “The electrocardiogram in population studies. A classification system,” Circulation, vol. 21, pp. 1160–1175, 1960. View at Google Scholar · View at Scopus
  29. M. E. Molitch, R. A. DeFronzo, M. J. Franz et al., “Diabetic nephropathy. Position statement,” Diabetes Care, vol. 26, supplement 1, pp. S94–S98, 2003. View at Google Scholar
  30. D. S. Fong, L. Aiello, T. W. Gardner et al., “Diabetic retinopathy. Position statement. Clinical practice recommendations 2003,” Diabetes Care, vol. 26, supplement 1, pp. S99–S102, 2003. View at Google Scholar
  31. C. Herder, M. Lankisch, D. Ziegler et al., “Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA survey F3 (Augsburg, Germany),” Diabetes Care, vol. 32, no. 4, pp. 680–682, 2009. View at Publisher · View at Google Scholar
  32. J. M. González-Clemente, C. Vilardell, M. Broch et al., “Lower heart rate variability is associated with higher plasma concentrations of IL-6 in type 1 diabetes,” European Journal of Endocrinology, vol. 157, no. 1, pp. 31–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Strazzullo and J. G. Puig, “Uric acid and oxidative stress: relative impact on cardiovascular risk?” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, pp. 409–414, 2007. View at Google Scholar
  34. A. So and B. Thorens, “Uric acid transport and disease,” Journal of Clinical Investigation, vol. 120, no. 6, pp. 1791–1799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Vincent, J. M. Hayes, L. L. McLean, A. Vivekanandan-Giri, S. Pennathur, and E. L. Feldman, “Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1,” Diabetes, vol. 58, no. 10, pp. 2376–2385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. T. D. Wiggin, K. A. Sullivan, R. Pop-Busui, A. Amato, A. A. F. Sima, and E. L. Feldman, “Elevated triglycerides correlate with progression of diabetic neuropathy,” Diabetes, vol. 58, no. 7, pp. 1634–1640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Tesfaye, N. Chaturvedi, S. E. Eaton et al., “Vascular risk factors and diabetic neuropathy,” New England Journal of Medicine, vol. 352, no. 4, pp. 341–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Papanas, K. Papatheodorou, D. Papazoglou, S. Kotsiou, and E. Maltezos, “A prospective study on the use of the indicator test Neuropad® for the early diagnosis of peripheral neuropathy in type 2 diabetes,” Experimental and Clinical Endocrinology and Diabetes, vol. 119, no. 2, pp. 122–125, 2011. View at Publisher · View at Google Scholar
  39. N. Papanas, P. Paschos, D. Papazoglou et al., “Accuracy of the neuropad test for the diagnosis of distal symmetric polyneuropathy in type 2 diabetes,” Diabetes Care, vol. 34, pp. 1378–1382, 2011. View at Google Scholar
  40. D. Ziegler, N. Papanas, and M. Roden, “Neuropad: evaluation of three cut-off points of sudomotor dysfunction for early detection of polyneuropathy in recently diagnosed diabetes,” Diabetic Medicine. In press. View at Publisher · View at Google Scholar
  41. A. M. Vincent, L. M. Hinder, R. Pop-Busui, and E. L. Feldman, “Hyperlipidemia: a new therapeutic target for diabetic neuropathy,” Journal of the Peripheral Nervous System, vol. 14, no. 4, pp. 257–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Gæde, P. Vedel, N. Larsen, G. V. Jensen, H. H. Parving, and O. Pedersen, “Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes,” New England Journal of Medicine, vol. 348, no. 5, pp. 383–393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Fioretto, P. M. Dodson, D. Ziegler, and R. S. Rosenson, “Residual microvascular risk in diabetes: unmet needs and future directions,” Nature Reviews Endocrinology, vol. 6, no. 1, pp. 19–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. G. Tsouli, E. N. Liberopoulos, D. P. Mikhailidis, V. G. Athyros, and M. S. Elisaf, “Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander?” Metabolism: Clinical and Experimental, vol. 55, no. 10, pp. 1293–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus