Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2011, Article ID 481427, 10 pages
http://dx.doi.org/10.1155/2011/481427
Research Article

Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

1Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
2Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA

Received 19 April 2011; Accepted 17 May 2011

Academic Editor: N. Cameron

Copyright © 2011 Han-Hung Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A.-G. Ziegler, M. Pflueger, C. Winkler et al., “Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children,” Journal of Autoimmunity, vol. 37, no. 1, pp. 3–7, 2011. View at Publisher · View at Google Scholar
  2. A. L. Notkins, “Immunologic and genetic factors in type 1 diabetes,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43545–43548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Bweir, M. Al-Jarrah, A. Almalty et al., “Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes,” Diabetology & Metabolic Syndrome, vol. 10, p. 27, 2009. View at Google Scholar
  4. N. LeBrasseur, K. Walsh, and Z. Arany, “Metabolic benefits of resistance training and fast glycolytic skeletal muscle,” American Journal of Physiology, vol. 300, pp. E3–E10, 2011. View at Google Scholar
  5. A. Swanson, K. Watrin, and L. Wilder, “Clinical Inquiries: how can we keep impaired glucose tolerance and impaired fasting glucose from progressing to diabetes?” The Journal of Family Practice, vol. 59, pp. 532–533, 2010. View at Google Scholar
  6. L. VanHoose, Y. Sawers, R. Loganathan et al., “Electrocardiographic changes with the onset of diabetes and the impact of aerobic exercise training in the Zucker Diabetic Fatty (ZDF) rat,” Cardiovascular Diabetology, vol. 9, article 56, 2010. View at Publisher · View at Google Scholar
  7. C. Sanz, J.-F. Gautier, and H. Hanaire, “Physical exercise for the prevention and treatment of type 2 diabetes,” Diabetes and Metabolism, vol. 36, no. 5, pp. 346–351, 2010. View at Publisher · View at Google Scholar
  8. J. P. H. Seeger, D. H. J. Thijssen, K. Noordam, M. E. C. Cranen, M. T. E. Hopman, and M. W. G. Nijhuis-Van Der Sanden, “Exercise training improves physical fitness and vascular function in children with type 1 diabetes,” Diabetes, Obesity and Metabolism, vol. 13, no. 4, pp. 382–384, 2011. View at Publisher · View at Google Scholar
  9. W. G. Mayhan, D. M. Arrick, K. P. Patel, and H. Sun, “Exercise training normalizes impaired NOS-dependent responses of cerebral arterioles in type 1 diabetic rats,” American Journal of Physiology, vol. 300, no. 3, pp. H1013–H1020, 2011. View at Publisher · View at Google Scholar
  10. B. Trigona, Y. Aggoun, A. Maggio et al., “Preclinical Noninvasive Markers of Atherosclerosis in Children and Adolescents with Type 1 Diabetes Are Influenced by Physical Activity,” Journal of Pediatrics, vol. 157, pp. 533–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Roche, S. Edmunds, T. Cable, M. Didi, and G. Stratton, “Skin microvascular reactivity in children and adolescents with type 1 diabetes in relation to levels of physical activity and aerobic fitness,” Pediatric Exercise Science, vol. 20, no. 4, pp. 426–438, 2008. View at Google Scholar · View at Scopus
  12. I. V. Smirnova, N. Kibiryeva, E. Vidoni, R. Bunag, and L. Stehno-Bittel, “Abnormal EKG stress test in rats with type 1 diabetes is deterred with low-intensity exercise programme,” Acta Diabetologica, vol. 43, no. 3, pp. 66–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. H. Shao, X. H. T. Wehrens, T. A. Wyatt et al., “Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation,” Journal of Applied Physiology, vol. 106, no. 4, pp. 1280–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. H. Hung, Y. W. Chen, D. Z. Shao, C. N. Chang, Y. Y. Tsai, and J. T. Cheng, “Exercise pretraining attenuates endotoxin-induced hemodynamic alteration in type I diabetic rats,” Applied Physiology, Nutrition and Metabolism, vol. 33, no. 5, pp. 976–983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. R. Bidasee, H. Zheng, C.-H. Shao, S. K. Parbhu, G. J. Rozanski, and K. P. Patel, “Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β-adrenoceptors,” Journal of Applied Physiology, vol. 105, no. 3, pp. 907–914, 2008. View at Publisher · View at Google Scholar
  16. E. Heyman, C. Toutain, P. Delamarche et al., “Exercise training and cardiovascular risk factors in Type 1 diabetic adolescent girls,” Pediatric Exercise Science, vol. 19, no. 4, pp. 408–419, 2007. View at Google Scholar · View at Scopus
  17. Y. M. Searls, I. V. Smirnova, B. R. Fegley, and L. Stehno-Bittel, “Exercise attenuates diabetes-induced ultrastructural changes in rat cardiac tissue,” Medicine and Science in Sports and Exercise, vol. 36, no. 11, pp. 1863–1870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Austin, V. Warty, J. Janosky, and S. Arslanian, “The relationship of physical fitness to lipid and lipoprotein(a) levels in adolescents with IDDM,” Diabetes Care, vol. 16, no. 2, pp. 421–425, 1993. View at Google Scholar · View at Scopus
  19. M. S. Faulkner, “Cardiovascular fitness and quality of life in adolescents with type 1 or type 2 diabetes,” Journal for Specialists in Pediatric Nursing, vol. 15, no. 4, pp. 307–316, 2010. View at Publisher · View at Google Scholar
  20. S. F. Michaliszyn and M. S. Faulkner, “Physical activity and sedentary behavior in adolescents with type 1 diabetes,” Research in Nursing & Health, vol. 33, no. 5, pp. 441–449, 2010. View at Publisher · View at Google Scholar
  21. R. D'hooge, T. Hellinckx, C. Van Laethem et al., “Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial,” Clinical Rehabilitation, vol. 25, no. 4, pp. 349–359, 2011. View at Publisher · View at Google Scholar
  22. S. Zeqiri, A. Ylli, and N. Zeqiri, “The effect of physical activity in glycemia in patients with diabetes mellitus,” Medicinski Arhiv, vol. 61, no. 3, pp. 146–149, 2007. View at Google Scholar · View at Scopus
  23. M. A. Salem, M. A. Aboelasrar, N. S. Elbarbary, R. A. Elhilaly, and Y. M. Refaat, “Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial,” Diabetology and Metabolic Syndrome, vol. 2, no. 1, article 47, 2010. View at Publisher · View at Google Scholar
  24. A. Herbst, R. Bachran, T. Kapellen, and R. W. Holl, “Effects of regular physical activity on control of glycemia in pediatric patients with type 1 diabetes mellitus,” Archives of Pediatrics and Adolescent Medicine, vol. 160, no. 6, pp. 573–577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. K. J. Nadeau, J. G. Regensteiner, T. A. Bauer et al., “Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 513–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. J. Mann, E. Ayuso, X. M. Anguela, and F. Bosch, “Skeletal muscle metabolism in the pathology and treatment of type 1 diabetes,” Current Pharmaceutical Design, vol. 16, no. 8, pp. 1002–1020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F. C. Howarth, F. M. A. Marzouqi, A. M. S. Al Saeedi, R. S. Hameed, and E. Adeghate, “The effect of a heavy exercise program on the distribution of pancreatic hormones in the streptozotocin-induced diabetic rat,” Journal of the Pancreas, vol. 10, no. 5, pp. 485–491, 2009. View at Google Scholar · View at Scopus
  28. O. Coskun, A. Ocakci, T. Bayraktaroglu, and M. Kanter, “Exercise training prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas,” Tohoku Journal of Experimental Medicine, vol. 203, no. 3, pp. 145–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H.-H. Huang, L. Novikova, S. J. Williams, I. V. Smirnova, and L. Stehno-Bittel, “Low insulin content of large islet population is present in situ and in isolated islets,” Islets, vol. 3, no. 1, pp. 6–13, 2011. View at Publisher · View at Google Scholar
  30. R. R. MacGregor, S. J. Williams, P. Y. Tong, K. Kover, W. V. Moore, and L. Stehno-Bittel, “Small rat islets are superior to large islets in in vitro function and in transplantation outcomes,” American Journal of Physiology, vol. 290, no. 5, pp. E771–E779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Williams, H. H. Huang, K. Kover et al., “Reduction of diffusion barriers in isolated rat islets improves survival, but not insulin secretion or transplantation outcome,” Organogenesis, vol. 6, no. 2, pp. 115–124, 2010. View at Google Scholar · View at Scopus
  32. S. J. Williams, Q. Wang, R. R. MacGregor, T. J. Siahaan, L. Stehno-Bittel, and C. Berkland, “Adhesion of pancreatic beta cells to biopolymer films,” Biopolymers, vol. 91, no. 8, pp. 676–685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Srinivasan, C. S. Choi, P. Ghoshal et al., “β-cell-specific pyruvate dehydrogenase deficiency impairs glucose-stimulated insulin secretion,” American Journal of Physiology, vol. 299, no. 6, pp. E910–E917, 2010. View at Publisher · View at Google Scholar
  34. V. C. Calegari, C. C. Zoppi, L. F. Rezende, L. R. Silveira, E. M. Carneiro, and A. C. Boschero, “Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets,” Journal of Endocrinology, vol. 208, no. 3, pp. 257–264, 2011. View at Publisher · View at Google Scholar
  35. M. Nakata, K. Manaka, S. Yamamoto, M. Mori, and T. Yada, “Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca2+ influx through L-type channels in mouse islet β-cells,” Endocrine Journal, vol. 58, no. 4, pp. 305–313, 2011. View at Publisher · View at Google Scholar
  36. C. A. Machado De Oliveira, M. F. Paiva, C. A. Soares Mota et al., “Exercise at anaerobic threshold intensity and insulin secretion by isolated pancreatic islets of rats,” Islets, vol. 2, no. 4, pp. 240–246, 2010. View at Publisher · View at Google Scholar
  37. V. Shivaswamy, M. McClure, J. Passer et al., “Hyperglycemia induced by tacrolimus and sirolimus is reversible in normal sprague-dawley rats,” Endocrine, vol. 37, no. 3, pp. 489–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Robertson, P. Adolfsson, G. Scheiner, R. Hanas, and M. C. Riddell, “Exercise in children and adolescents with diabetes,” Pediatric Diabetes, vol. 10, no. 12, pp. 154–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. G. M. Reaven and F. Chang, “Effect of exercise-training on the metabolic manifestations of streptozotocin-induced diabetes in the rat,” Diabetologia, vol. 21, no. 4, pp. 415–417, 1981. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Király, H. E. Bates, J. T. Y. Yue et al., “Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: the effects of stress and non-volitional exercise,” Metabolism, vol. 56, no. 6, pp. 732–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. E. P. Reaven and G. M. Reaven, “Structure and function changes in the endocrine pancreas of aging rats with reference to the modulating effects of exercise and caloric restriction,” Journal of Clinical Investigation, vol. 68, no. 1, pp. 75–84, 1981. View at Google Scholar · View at Scopus
  42. E. Teixeira de Lemos, F. Reis, S. Baptista et al., “Exercise training decreases proinflammatory profile in Zucker diabetic (type 2) fatty rats,” Nutrition, vol. 25, no. 3, pp. 330–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Colombo, S. Gregersen, M. Kruhoeffer et al., “Prevention of hyperglycemia in Zucker diabetic fatty rats by exercise training: effects on gene expression in insulin-sensitive tissues determined by high-density oligonucleotide microarray analysis,” Metabolism, vol. 54, no. 12, pp. 1571–1581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Maris, G. B. Ferreira, W. D'Hertog et al., “High glucose induces dysfunction in insulin secretory cells by different pathways: a proteomic approach,” Journal of Proteome Research, vol. 9, no. 12, pp. 6274–6287, 2010. View at Publisher · View at Google Scholar
  45. Z. Q. Hou, H. L. Li, L. Gao, L. Pan, J. J. Zhao, and G. W. Li, “Involvement of chronic stresses in rat islet and INS-1 cell glucotoxicity induced by intermittent high glucose,” Molecular and Cellular Endocrinology, vol. 291, no. 1-2, pp. 71–78, 2008. View at Publisher · View at Google Scholar · View at Scopus