Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012 (2012), Article ID 238980, 12 pages
http://dx.doi.org/10.1155/2012/238980
Review Article

The Role of Endoplasmic Reticulum Stress in Autoimmune-Mediated Beta-Cell Destruction in Type 1 Diabetes

1The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
2The Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, CA4098, Augusta, GA 30912, USA
3Affiliated Hospital of Guangdong Medical College, 57 Ren-Ming Road, Zhanjiang 524001, China
4The Department of Clinical Immunology, Guangdong Medical College, 1 Xincheng Avenue, Dongguan 523808, China

Received 11 July 2011; Accepted 27 November 2011

Academic Editor: Muthuswamy Balasubramanyam

Copyright © 2012 Jixin Zhong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Maahs, N. A. West, J. M. Lawrence, and E. J. Mayer-Davis, “Epidemiology of type 1 diabetes,” Endocrinology and Metabolism Clinics of North America, vol. 39, no. 3, pp. 481–497, 2010. View at Publisher · View at Google Scholar
  2. P. Yang, H.-L. Li, and C.-Y. Wang, “FUT2 nonfunctional variant: a "missing link" between genes and environment in type 1 diabetes?” Diabetes, vol. 60, no. 11, pp. 2685–2687, 2011. View at Publisher · View at Google Scholar
  3. E. Bandurska-Stankiewicz and D. Wiatr, “Programme preventing vision loss due to diabetes,” Klinika Oczna, vol. 109, no. 7–9, pp. 359–362, 2007. View at Google Scholar · View at Scopus
  4. N. Cheung and T. Y. Wong, “Diabetic retinopathy and systemic vascular complications,” Progress in Retinal and Eye Research, vol. 27, no. 2, pp. 161–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Studholme, “Diabetic retinopathy,” Journal of Perioperative Practice, vol. 18, no. 5, pp. 205–210, 2008. View at Google Scholar
  6. V. Monhart, “Diabetes mellitus, hypertension and kidney,” Vnitrni Lekarstvi, vol. 54, no. 5, pp. 499–507, 2008. View at Google Scholar · View at Scopus
  7. J. F. Navarro-González and C. Mora-Fernández, “The role of inflammatory cytokines in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 19, no. 3, pp. 433–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Boulton, “Diabetic neuropathy: classification, measurement and treatment,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 2, pp. 141–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Cornell and I. Ducic, “Painful diabetic neuropathy,” Clinics in Podiatric Medicine and Surgery, vol. 25, no. 3, pp. 347–360, 2008. View at Publisher · View at Google Scholar
  10. E. Otto-Buczkowska, Z. Kazibutowska, J. Sołyk, and Ł. Machnica, “Neuropathy and type 1 diabetes mellitus,” Endokrynologia, Diabetologia i Choroby Przemiany Materii Wieku Rozwojowego, vol. 14, no. 2, pp. 109–116, 2008. View at Google Scholar · View at Scopus
  11. S. E. Gardner and R. A. Frantz, “Wound bioburden and infection-related complications in diabetic foot ulcers,” Biological Research for Nursing, vol. 10, no. 1, pp. 44–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Malgrange, “Physiopathology of the diabetic foot,” Revue de Medecine Interne, vol. 29, supplement 2, pp. S231–S237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Ochoa, F. M. Torres, and P. K. Shireman, “Chemokines and diabetic wound healing,” Vascular, vol. 15, no. 6, pp. 350–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Anselmino, H. Gohlke, L. Mellbin, and L. Rydén, “Cardiovascular prevention in patients with diabetes and prediabetes,” Herz, vol. 33, no. 3, pp. 170–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Inoguchi and R. Takayanagi, “Role of oxidative stress in diabetic vascular complications,” Fukuoka Igaku Zasshi, vol. 99, no. 3, pp. 47–55, 2008. View at Google Scholar · View at Scopus
  16. T. H. Marwick, “Diabetic heart disease,” Postgraduate Medical Journal, vol. 84, no. 990, pp. 188–192, 2008. View at Google Scholar · View at Scopus
  17. W. D'Hertog, M. Maris, G. B. Ferreira et al., “Novel insights into the global proteome responses of insulin-producing INS-1E cells to different degrees of endoplasmic reticulum stress,” Journal of Proteome Research, vol. 9, no. 10, pp. 5142–5152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Hubbard and R. J. Ivatt, “Synthesis and processing of asparagine-linked oligosaccharides,” Annual Review of Biochemistry, vol. 50, pp. 555–583, 1981. View at Google Scholar · View at Scopus
  19. R. Kornfeld and S. Kornfeld, “Assembly of asparagine-linked oligosaccharides,” Annual Review of Biochemistry, vol. 54, pp. 631–664, 1985. View at Google Scholar · View at Scopus
  20. S. W. Fewell, K. J. Travers, J. S. Weissman, and J. L. Brodsky, “The action of molecular chaperones in the early secretory pathway,” Annual Review of Genetics, vol. 35, pp. 149–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Paltauf, S. D. Kohlwein, and S. A. Henry, “Regulation and compartmentalization of lipid synthesis in yeast,” in The Molecular and Cellular Biology of the Yeast Saccharomyces, E. W. Jones and J. R. Broach, Eds., pp. 415–500, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1992. View at Google Scholar
  22. A. S. Lee, “The glucose-regulated proteins: stress induction and clinical applications,” Trends in Biochemical Sciences, vol. 26, no. 8, pp. 504–510, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Schröder and P. Friedl, “Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation and decreased secretion of recombinant protein,” Biotechnology and Bioengineering, vol. 53, no. 6, pp. 547–559, 1997. View at Google Scholar
  24. M. Schröder, R. Schäfer, and P. Friedl, “Induction of protein aggregation in an early secretory compartment by elevation of expression level,” Biotechnology and Bioengineering, vol. 78, no. 2, pp. 131–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Dorner, L. C. Wasley, and R. J. Kaufman, “Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells,” Journal of Biological Chemistry, vol. 264, no. 34, pp. 20602–20607, 1989. View at Google Scholar · View at Scopus
  26. R. J. Kaufman, L. C. Wasley, and A. J. Dorner, “Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells,” Journal of Biological Chemistry, vol. 263, no. 13, pp. 6352–6362, 1988. View at Google Scholar · View at Scopus
  27. M. Schröder and R. J. Kaufman, “ER stress and the unfolded protein response,” Mutation Research, vol. 569, no. 1-2, pp. 29–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Reimold, N. N. Iwakoshi, J. Manis et al., “Plasma cell differentiation requires the transcription factor XBP-1,” Nature, vol. 412, no. 6844, pp. 300–307, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. N. N. Iwakoshi, A. H. Lee, P. Vallabhajosyula, K. L. Otipoby, K. Rajewsky, and L. H. Glimcher, “Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-I,” Nature Immunology, vol. 4, no. 4, pp. 321–329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. Martínez and M. J. Chrispeels, “Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes,” Plant Cell, vol. 15, no. 2, pp. 561–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. M. Pakula, M. Laxell, A. Huuskonen, J. Uusitalo, M. Saloheimo, and M. Penttilä, “The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 45011–45020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. P. Harding, Y. Zhang, and D. Ron, “Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase,” Nature, vol. 397, no. 6716, pp. 271–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Casagrande, P. Stern, M. Diehn et al., “Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway,” Molecular Cell, vol. 5, no. 4, pp. 729–735, 2000. View at Google Scholar · View at Scopus
  34. R. Friedlander, E. Jarosch, J. Urban, C. Volkwein, and T. Sommer, “A regulatory link between ER-associated protein degradation and the unfolded-protein response,” Nature Cell Biology, vol. 2, no. 7, pp. 379–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. K. J. Travers, C. K. Patil, L. Wodicka, D. J. Lockhart, J. S. Weissman, and P. Walter, “Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation,” Cell, vol. 101, no. 3, pp. 249–258, 2000. View at Google Scholar · View at Scopus
  36. R. J. Kaufman, “Orchestrating the unfolded protein response in health and disease,” Journal of Clinical Investigation, vol. 110, no. 10, pp. 1389–1398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. F. J. Stevens and Y. Argon, “Protein folding in the ER,” Seminars in Cell and Developmental Biology, vol. 10, no. 5, pp. 443–454, 1999. View at Publisher · View at Google Scholar
  38. M. Schröder, “Endoplasmic reticulum stress responses,” Cellular and Molecular Life Sciences, vol. 65, no. 6, pp. 862–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. K. Suzuki, J. S. Bonifacino, A. Y. Lin, M. M. Davis, and R. D. Klausner, “Regulating the retention of T-cell receptor α chain variants within the endoplasmic reticulum: Ca2+-dependent association with BiP,” Journal of Cell Biology, vol. 114, no. 2, pp. 189–205, 1991. View at Google Scholar · View at Scopus
  40. L. J. Li, X. Li, A. Ferrario et al., “Establishment of a Chinese hamster ovary cell line that expresses grp78 antisense transcripts and suppresses A23187 induction of both GRP78 and GRP94,” Journal of Cellular Physiology, vol. 153, no. 3, pp. 575–582, 1992. View at Publisher · View at Google Scholar · View at Scopus
  41. E. F. Corbett, K. Oikawa, P. Francois et al., “Ca2+ regulation of interactions between endoplasmic reticulum chaperones,” Journal of Biological Chemistry, vol. 274, no. 10, pp. 6203–6211, 1999. View at Publisher · View at Google Scholar
  42. J. X. Zhang, I. Braakman, K. E. S. Matlack, and A. Helenius, “Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations,” Molecular Biology of the Cell, vol. 8, no. 10, pp. 1943–1954, 1997. View at Google Scholar · View at Scopus
  43. S. Orrenius, B. Zhivotovsky, and P. Nicotera, “Regulation of cell death: the calcium-apoptosis link,” Nature Reviews Molecular Cell Biology, vol. 4, no. 7, pp. 552–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Xu, B. Bailly-Maitre, and J. C. Reed, “Endoplasmic reticulum stress: cell life and death decisions,” Journal of Clinical Investigation, vol. 115, no. 10, pp. 2656–2664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Lee, W. Tirasophon, X. Shen et al., “IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response,” Genes and Development, vol. 16, no. 4, pp. 452–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Ye, R. B. Rawson, R. Komuro et al., “ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs,” Molecular Cell, vol. 6, no. 6, pp. 1355–1364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. D. L. Eizirik, A. K. Cardozo, and M. Cnop, “The role for endoplasmic reticulum stress in diabetes mellitus,” Endocrine Reviews, vol. 29, no. 1, pp. 42–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. R. Laybutt, A. M. Preston, M. C. Åkerfeldt et al., “Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes,” Diabetologia, vol. 50, no. 4, pp. 752–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. H. P. Harding, H. Zeng, Y. Zhang et al., “Diabetes mellitus and exocrine pancreatic dysfunction in Perk-/- mice reveals a role for translational control in secretory cell survival,” Molecular Cell, vol. 7, no. 6, pp. 1153–1163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Delépine, M. Nicolino, T. Barrett, M. Golamaully, G. Mark Lathrop, and C. Julier, “EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome,” Nature Genetics, vol. 25, no. 4, pp. 406–409, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Araki, S. Oyadomari, and M. Mori, “Endoplasmic reticulum stress and diabetes mellitus,” Internal Medicine, vol. 42, no. 1, pp. 7–14, 2003. View at Google Scholar · View at Scopus
  52. D. Scheuner, B. Song, E. McEwen et al., “Translational control is required for the unfolded protein response and in vivo glucose homeostasis,” Molecular Cell, vol. 7, no. 6, pp. 1165–1176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Mathis, L. Vence, and C. Benoist, “β-cell death during progression to diabetes,” Nature, vol. 414, no. 6865, pp. 792–798, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Oyadomari and M. Mori, “Roles of CHOP/GADD153 in endoplasmic reticulum stress,” Cell Death and Differentiation, vol. 11, no. 4, pp. 381–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Oyadomari, K. Takeda, M. Takiguchi et al., “Nitric oxide-induced apoptosis in pancreatic β cells is mediated by the endoplasmic reticulum stress pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10845–10850, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Ron, “Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse,” Journal of Clinical Investigation, vol. 109, no. 4, pp. 443–445, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. D. L. Eizirik, M. L. Colli, and F. Ortis, “The role of inflammation in insulitis and β-cell loss in type 1 diabetes,” Nature Reviews Endocrinology, vol. 5, no. 4, pp. 219–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Zhong, P. Yang, and C. Wang, “Environmental triggers and endogenous alarmins linking innate immunity to the pathogenesis of type 1 diabetes,” in Type 1 Diabetes Mellitus: Etiology, Diagnosis and Treatment, pp. 177–206, Nova Science, 2011. View at Google Scholar
  59. J. Han, J. Zhong, W. Wei et al., “Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice,” Diabetes, vol. 57, no. 8, pp. 2118–2127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Zhang, J. Zhong, P. Yang, F. Gong, and C. Y. Wang, “HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes,” International Journal of Clinical and Experimental Pathology, vol. 3, no. 1, pp. 24–38, 2010. View at Google Scholar · View at Scopus
  61. E. N. Gurzov, F. Ortis, D. A. Cunha et al., “Signaling by IL-1β+IFN-γ and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic β-cell apoptosis,” Cell Death and Differentiation, vol. 16, no. 11, pp. 1539–1550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. K. Cardozo, F. Ortis, J. Storling et al., “Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells,” Diabetes, vol. 54, no. 2, pp. 452–461, 2005. View at Publisher · View at Google Scholar
  63. D. T. Rutkowski and R. J. Kaufman, “A trip to the ER: coping with stress,” Trends in Cell Biology, vol. 14, no. 1, pp. 20–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Baekkeskov, J. N. Nielsen, and B. Marner, “Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins,” Nature, vol. 298, no. 5870, pp. 167–169, 1982. View at Google Scholar · View at Scopus
  65. K. Zhang, H. N. Wong, B. Song, C. N. Miller, D. Scheuner, and R. J. Kaufman, “The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 268–281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. L. Shaffer, M. Shapiro-Shelef, N. N. Iwakoshi et al., “XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation,” Immunity, vol. 21, no. 1, pp. 81–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Niu, B. H. Ye, and R. Dalla-Favera, “Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor,” Genes and Development, vol. 12, no. 13, pp. 1953–1961, 1998. View at Google Scholar · View at Scopus
  68. K. I. Lin, C. Angelin-Duclos, T. C. Kuo, and K. Calame, “Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4771–4780, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. A. M. Reimold, P. D. Ponath, Y. S. Li et al., “Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1,” Journal of Experimental Medicine, vol. 183, no. 2, pp. 393–401, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Zhao and S. L. Ackerman, “Endoplasmic reticulum stress in health and disease,” Current Opinion in Cell Biology, vol. 18, no. 4, pp. 444–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Zhang, X. Shen, J. Wu et al., “Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response,” Cell, vol. 124, no. 3, pp. 587–599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. N. N. Iwakoshi, M. Pypaert, and L. H. Glimcher, “The transcription factor XBP-1 is essential for the development and survival of dendritic cells,” Journal of Experimental Medicine, vol. 204, no. 10, pp. 2267–2275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. J. C. Goodall, C. Wu, Y. Zhang et al., “Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17698–17703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. E. Richardson, T. Kooistra, and D. H. Kim, “An essential role for XBP-1 in host protection against immune activation in C. elegans,” Nature, vol. 463, no. 7284, pp. 1092–1095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Kaser, A. H. Lee, A. Franke et al., “XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease,” Cell, vol. 134, no. 5, pp. 743–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. C. W. Woo, D. Cui, J. Arellano et al., “Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling,” Nature cell biology, vol. 11, no. 12, pp. 1473–1480, 2009. View at Google Scholar · View at Scopus
  77. J. D. Malhotra and R. J. Kaufman, “Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2277–2293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. B. P. Tu and J. S. Weissman, “Oxidative protein folding in eukaryotes: mechanisms and consequences,” Journal of Cell Biology, vol. 164, no. 3, pp. 341–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. H. P. Harding, Y. Zhang, H. Zeng et al., “An integrated stress response regulates amino acid metabolism and resistance to oxidative stress,” Molecular Cell, vol. 11, no. 3, pp. 619–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. S. B. Cullinan, D. Zhang, M. Hannink, E. Arvisais, R. J. Kaufman, and J. A. Diehl, “Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival,” Molecular and Cellular Biology, vol. 23, no. 20, pp. 7198–7209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. S. B. Cullinan and J. A. Diehl, “PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress,” Journal of Biological Chemistry, vol. 279, no. 19, pp. 20108–20117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Hu, Z. Han, A. D. Couvillon, R. J. Kaufman, and J. H. Exton, “Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 3071–3084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. R. J. Davis, “Signal transduction by the JNK group of MAP kinases,” Cell, vol. 103, no. 2, pp. 239–252, 2000. View at Google Scholar · View at Scopus
  84. H. Yamazaki, N. Hiramatsu, K. Hayakawa et al., “Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response,” Journal of Immunology, vol. 183, no. 2, pp. 1480–1487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. Q. Wang, H. Zhang, B. Zhao, and H. Fei, “IL-1β caused pancreatic β-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca2+ release through the c-Jun N-terminal kinase pathway,” Molecular and Cellular Biochemistry, vol. 324, no. 1-2, pp. 183–190, 2009. View at Publisher · View at Google Scholar
  86. U. K. Messmer and B. Brüne, “Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways,” Biochemical Journal, vol. 319, no. 1, pp. 299–305, 1996. View at Google Scholar · View at Scopus
  87. R. I. Viner, D. A. Ferrington, T. D. Williams, D. J. Bigelow, and C. Schöneich, “Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle,” Biochemical Journal, vol. 340, no. 3, pp. 657–669, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Y. Xu, D. L. Huso, T. M. Dawson, D. S. Bredt, and L. C. Becker, “Nitric oxide synthase in cardiac sarcoplasmic reticulum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 657–662, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Xu, J. P. Eu, G. Meissner, and J. S. Stamler, “Activation of the cardiac calcium release channel (Ryanodoine receptor) by poly-S-nitrosylation,” Science, vol. 279, no. 5348, pp. 234–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Liu, R. C. Bowes III, B. Van De Water, C. Sillence, J. F. Nagelkerke, and J. L. Stevens, “Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells,” Journal of Biological Chemistry, vol. 272, no. 35, pp. 21751–21759, 1997. View at Publisher · View at Google Scholar
  91. H. P. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron, “Perk is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell, vol. 5, no. 5, pp. 897–904, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Urano, X. Wang, A. Bertolotti et al., “Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1,” Science, vol. 287, no. 5453, pp. 664–666, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Zheng, V. Kabaleeswaran, Y. Wang, G. Cheng, and H. Wu, “Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation,” Molecular Cell, vol. 38, no. 1, pp. 101–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Habelhah, S. Takahashi, S. G. Cho, T. Kadoya, T. Watanabe, and Z. Ronai, “Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB,” EMBO Journal, vol. 23, no. 2, pp. 322–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Yoneda, K. Imaizumi, K. Oono et al., “Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 13935–13940, 2001. View at Google Scholar · View at Scopus
  96. T. Nakagawa, H. Zhu, N. Morishima et al., “Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β,” Nature, vol. 403, no. 6765, pp. 98–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. R. V. Rao, E. Hermel, S. Castro-Obregon et al., “Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 33869–33874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Hitomi, T. Katayama, Y. Eguchi et al., “Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death,” Journal of Cell Biology, vol. 165, no. 3, pp. 347–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. H. H. Cheung, N. Lynn Kelly, P. Liston, and R. G. Korneluk, “Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: a role for the IAPs,” Experimental Cell Research, vol. 312, no. 12, pp. 2347–2357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Yamamoto, H. Ichijo, and S. J. Korsmeyer, “BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M,” Molecular and Cellular Biology, vol. 19, no. 12, pp. 8469–8478, 1999. View at Google Scholar · View at Scopus
  101. G. V. Putcha, S. Le, S. Frank et al., “JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis,” Neuron, vol. 38, no. 6, pp. 899–914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Lei and R. J. Davis, “JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2432–2437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Nishitoh, A. Matsuzawa, K. Tobiume et al., “ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats,” Genes and Development, vol. 16, no. 11, pp. 1345–1355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. X. Wang and D. Ron, “Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase,” Science, vol. 272, no. 5266, pp. 1347–1349, 1996. View at Google Scholar · View at Scopus
  105. K. D. McCullough, J. L. Martindale, L. O. Klotz, T. Y. Aw, and N. J. Holbrook, “Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state,” Molecular and Cellular Biology, vol. 21, no. 4, pp. 1249–1259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Matsumoto, M. Minami, K. Takeda, Y. Sakao, and S. Akira, “Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells,” FEBS Letters, vol. 395, no. 2-3, pp. 143–147, 1996. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Zinszner, M. Kuroda, X. Wang et al., “CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum,” Genes and Development, vol. 12, no. 7, pp. 982–995, 1998. View at Google Scholar · View at Scopus