Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 375673, 10 pages
http://dx.doi.org/10.1155/2012/375673
Research Article

Fagopyrum tataricum (Buckwheat) Improved High-Glucose-Induced Insulin Resistance in Mouse Hepatocytes and Diabetes in Fructose-Rich Diet-Induced Mice

Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan

Received 9 October 2011; Accepted 11 January 2012

Academic Editor: Pietro Galassetti

Copyright © 2012 Chia-Chen Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Jang, J. H. Ko, C. W. Ahn et al., “In vivo and in vitro application of black soybean peptides in the amelioration of endoplasmic reticulum stress and improvement of insulin resistance,” Life Sciences, vol. 86, no. 7-8, pp. 267–274, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Zimmet, K. G. M. M. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. Nagai, Y. Nishio, T. Nakamura, H. Maegawa, R. Kikkawa, and A. Kashiwagi, “Amelioration of high fructose-induced metabolic derangements by activation of PPARα,” American Journal of Physiology, vol. 282, no. 5, pp. E1180–E1190, 2002. View at Google Scholar · View at Scopus
  4. R. Nagata, Y. Nishio, O. Sekine et al., “Single nucleotide polymorphism (-468 Gly to Ala) at the promoter region of sterol regulatory element-binding protein-1c associates with genetic defect of fructose-induced hepatic lipogenesis,” Journal of Biological Chemistry, vol. 279, no. 28, pp. 29031–29042, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. J. Dekker, Q. Su, C. Baker, A. C. Rutledge, and K. Adeli, “Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome,” American Journal of Physiology, vol. 299, no. 5, pp. E685–E694, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. H. Adams, K. L. Stanhope, R. W. Grant, B. P. Cummings, and P. J. Havel, “Metabolic and endocrine profiles in response to systemic infusion of fructose and glucose in rhesus macaques,” Endocrinology, vol. 149, no. 6, pp. 3002–3008, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. B. Vos and C. J. McClain, “Fructose takes a toll,” Hepatology, vol. 50, no. 4, pp. 1004–1006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Faeh, K. Minehira, J. M. Schwarz, R. Periasami, P. Seongsu, and L. Tappy, “Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men,” Diabetes, vol. 54, no. 7, pp. 1907–1913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Holasova, V. Fiedlerova, H. Smrcinova, M. Orsak, J. Lachman, and S. Vavreinova, “Buckwheat—the source of antioxidant activity in functional foods,” Food Research International, vol. 35, no. 2-3, pp. 207–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Liu, Y. S. Chen, J. H. Yang, and B. H. Chiang, “Antioxidant activity of tartary (Fagopyrum tataricum (L.) gaertn.) and common (Fagopyrum esculentum moench) buckwheat sprouts,” Journal of Agricultural and Food Chemistry, vol. 56, no. 1, pp. 173–178, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. B.-H. Lee, W.-H. Hsu, and T.-M. Pan, “Inhibitory effects of dioscorea polysaccharide on TNF-α-induced insulin resistance in mouse FL83B cells,” Journal of Agricultural and Food Chemistry, vol. 59, no. 10, pp. 5279–5285, 2011. View at Publisher · View at Google Scholar
  12. A. Schieber, P. Keller, and R. Carle, “Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography,” Journal of Chromatography A, vol. 910, no. 2, pp. 265–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. T. P. Liu, I. M. Liu, and J. T. Cheng, “Improvement of insulin resistance by Panax ginseng in fructose-rich chow-fed rats,” Hormone and Metabolic Research, vol. 37, no. 3, pp. 146–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Sharma and B. P. Srinivasan, “Triple verses glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats,” European Journal of Pharmaceutical Sciences, vol. 38, no. 5, pp. 433–444, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar
  16. R. Jalal, S. M. Bagheri, A. Moghimi, and M. B. Rasuli, “Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance,” Journal of Clinical Biochemistry and Nutrition, vol. 41, no. 3, pp. 218–223, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. Mohandas, J. J. Marshall, and G. G. Duggin, “Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer,” Cancer Research, vol. 44, no. 11, pp. 5086–5091, 1984. View at Google Scholar · View at Scopus
  18. G. Bellomo, F. Mirabelli, and D. DiMonte, “Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone),” Biochemical Pharmacology, vol. 36, no. 8, pp. 1313–1320, 1987. View at Google Scholar · View at Scopus
  19. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Marklund and G. Marklund, “Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase,” European Journal of Biochemistry, vol. 47, no. 3, pp. 469–474, 1974. View at Google Scholar · View at Scopus
  21. B. H. Lee, B. Y. Ho, C. T. Wang, and T. M. Pan, “Red mold rice promoted antioxidase activity against oxidative injury and improved the memory ability of zinc-deficient rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 22, pp. 10600–10607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Gray, Handbook of Basic Microtechnique, McGraw-Hill, New York, NY, USA, 3rd edition, 1964.
  23. D. R. Alessi and P. Cohen, “Mechanism of activation and function of protein kinase B,” Current Opinion in Genetics and Development, vol. 8, no. 1, pp. 55–62, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Kola, M. Boscaro, G. A. Rutter, A. B. Grossman, and M. Korbonits, “Expanding role of AMPK in endocrinology,” Trends in Endocrinology and Metabolism, vol. 17, no. 5, pp. 205–215, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, “AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism,” Cell Metabolism, vol. 1, no. 1, pp. 15–25, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. B.-H. Lee, W.-H. Hsu, T.-H. Liao, and T.-M. Pan, “The Monascus metabolite monascin against TNF-α-induced insulin resistance via suppressing PPAR-γ phosphorylation in C2C12 myotubes,” Food and Chemical Toxicology, vol. 49, no. 10, pp. 2609–2617, 2011. View at Publisher · View at Google Scholar
  27. I. Jialal and S. K. Venugopal, “Oxidative strees, inflammation, and diabetic vasculopathies: the role of alpha tocopherol therapy,” Free Radical Research, vol. 36, no. 12, pp. 1331–1336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Jain, K. Kannan, G. Lim, J. Matthews-Greek, R. McVie, and J. A. Bocchini, “Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes,” Diabetes Care, vol. 26, no. 7, pp. 2139–2143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Shanmugam, M. A. Reddy, M. Guha, and R. Natarajan, “High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells,” Diabetes, vol. 52, no. 5, pp. 1256–1264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, “From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions,” Progress in Lipid Research, vol. 45, no. 2, pp. 120–159, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. Díaz-Delfín, M. Morales, and C. Caelles, “Hypoglycemic action of thiazolidinediones/peroxisome proliferator-activated receptor γ by inhibition of the c-Jun NH2-terminal kinase pathway,” Diabetes, vol. 56, no. 7, pp. 1865–1871, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. J. Dekker, Q. Su, C. Baker, A. C. Rutledge, and K. Adeli, “Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome,” American Journal of Physiology, vol. 299, no. 5, pp. E685–E694, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. B. Salgin, M. L. Marcovecchio, R. M. Williams et al., “Effects of growth hormone and free fatty acids on insulin sensitivity in patients with type 1 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3297–3305, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. Burke and G. A. FitzGerald, “Oxidative stress and smoking-induced vascular injury,” Progress in Cardiovascular Diseases, vol. 46, no. 1, pp. 79–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. L. S. Nakao, L. K. Iwai, J. Kalil, and O. Augusto, “Radical production from free and peptide-bound methionine sulfoxide oxidation by peroxynitrite and hydrogen peroxide/iron(II),” FEBS Letters, vol. 547, no. 1–3, pp. 87–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. M. Niedowicz and D. L. Daleke, “The role of oxidative stress in diabetic complications,” Cell Biochemistry and Biophysics, vol. 43, no. 2, pp. 289–330, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. Shah, N. Mehta, and M. P. Reilly, “Adipose inflammation, insulin resistance, and cardiovascular disease,” Journal of Parenteral and Enteral Nutrition, vol. 32, no. 6, pp. 638–644, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. L. A. Videla, “Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms,” World Journal of Hepatology, vol. 1, pp. 72–78, 2009. View at Google Scholar