Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012 (2012), Article ID 470302, 8 pages
http://dx.doi.org/10.1155/2012/470302
Research Article

Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
2Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel

Received 12 January 2012; Revised 3 May 2012; Accepted 17 May 2012

Academic Editor: Anandwardhan Hardikar

Copyright © 2012 Amitai D. Mandelbaum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Baroukh, M. A. Ravier, M. K. Loder et al., “MicroRNA-124a regulates foxa2 expression and intracellular signaling in pancreatic β-cell lines,” Journal of Biological Chemistry, vol. 282, no. 27, pp. 19575–19588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. El Ouaamari, N. Baroukh, G. A. Martens, P. Lebrun, D. Pipeleers, and E. Van Obberghen, “MiR-375 targets 3′l-phosphoinositide-dependent protein Kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells,” Diabetes, vol. 57, no. 10, pp. 2708–2717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Hennessy and L. O'Driscoll, “Molecular medicine of microRNAs: structure, function and implications for diabetes,” Expert Reviews in Molecular Medicine, vol. 10, p. e24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. V. Joglekar, V. S. Parekh, and A. A. Hardikar, “New pancreas from old: microregulators of pancreas regeneration,” Trends in Endocrinology and Metabolism, vol. 18, no. 10, pp. 393–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. N. Poy, J. Hausser, M. Trajkovskia et al., “miR-375 maintains normal pancreatic alpha- and beta-cell mass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5813–5818, 2009. View at Publisher · View at Google Scholar
  7. M. N. Poy, M. Spranger, and M. Stoffel, “microRNAs and the regulation of glucose and lipid metabolism,” Diabetes, Obesity and Metabolism, vol. 9, supplement 2, pp. 67–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. M. Hammond, “Dicing and slicing: the core machinery of the RNA interference pathway,” FEBS Letters, vol. 579, no. 26, pp. 5822–5829, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. F. C. Lynn, P. Skewes-Cox, Y. Kosaka, M. T. McManus, B. D. Harfe, and M. S. German, “MicroRNA expression is required for pancreatic islet cell genesis in the mouse,” Diabetes, vol. 56, no. 12, pp. 2938–2945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Morita, A. Hara, I. Kojima et al., “Dicer is required for maintaining adult pancreas,” PLoS ONE, vol. 4, no. 1, Article ID e4212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Melkman-Zehavi, R. Oren, S. Kredo-Russo et al., “miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors,” The EMBO Journal, vol. 30, no. 5, pp. 835–845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. B. D. Angst, C. Marcozzi, and A. I. Magee, “The cadherin superfamily: diversity in form and function,” Journal of Cell Science, vol. 114, part 4, pp. 629–641, 2001. View at Google Scholar · View at Scopus
  14. D. G. Rouiller, V. Cirulli, and P. A. Halban, “Uvomorulin mediates calcium-dependent aggregation of islet cells, whereas calcium-independent cell adhesion molecules distinguish between islet cell types,” Developmental Biology, vol. 148, no. 1, pp. 233–242, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. Hauge-Evans, P. E. Squires, S. J. Persaud, and P. M. Jones, “Pancreatic β-cell-to-β-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets,” Diabetes, vol. 48, no. 7, pp. 1402–1408, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Yamagata, T. Nammo, M. Moriwaki et al., “Overexpression of dominant-negative mutant hepatocyte nuclear factor-1α in pancreatic β-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced β-cell proliferation, and diabetes,” Diabetes, vol. 51, no. 1, pp. 114–123, 2002. View at Google Scholar · View at Scopus
  17. U. Dahl, A. Sjodin, and H. Semb, “Cadherins regulate aggregation of pancreatic β-cells in vivo,” Development, vol. 122, no. 9, pp. 2895–2902, 1996. View at Google Scholar · View at Scopus
  18. F. Esni, I. B. Täljedal, A. K. Perl, H. Cremer, G. Christofori, and H. Semb, “Neural cell adhesion molecule (N-CAM) is required for cell: type segregation and normal ultrastructure in pancreatic islets,” Journal of Cell Biology, vol. 144, no. 2, pp. 325–337, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. B. D. Harfe, M. T. McManus, J. H. Mansfield, E. Hornstein, and C. J. Tabin, “The RNaseIII enzyme dicer is required for morphogenesis but not patterning of the vertebrate limb,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 10898–10903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Gannon, C. Shiota, C. Postic, C. V. E. Wright, and M. Magnuson, “Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas,” Genesis, vol. 26, no. 2, pp. 139–142, 2000. View at Google Scholar
  21. S. Srinivas, T. Watanabe, C. S. Lin et al., “Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus,” BMC Developmental Biology, vol. 1, no. 1, p. 4, 2001. View at Google Scholar · View at Scopus
  22. T. L. Cuellar, T. H. Davis, P. T. Nelson et al., “Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5614–5619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Kanellopoulou, S. A. Muljo, A. L. Kung et al., “Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing,” Genes and Development, vol. 19, no. 4, pp. 489–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Gradus, I. Alon, and E. Hornstein, “miRNAs control tracheal chondrocyte differentiation,” Developmental Biology, vol. 360, no. 1, pp. 58–65, 2011. View at Google Scholar
  25. M. Kalis, C. Bolmeson, J. L. S. Esguerra et al., “Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus,” PLoS ONE, vol. 6, no. 12, Article ID e29166, 2011. View at Google Scholar
  26. O. Boussadia, S. Kutsch, A. Hierholzer, V. Delmas, and R. Kemler, “E-cadherin is a survival factor for the lactating mouse mammary gland,” Mechanisms of Development, vol. 115, no. 1-2, pp. 53–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. J. Rogers, M. N. Hodgkin, and P. E. Squires, “E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet,” Cellular Physiology and Biochemistry, vol. 20, no. 6, pp. 987–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Lin, A. Taguchi, S. Park et al., “Dysregulation of insulin receptor substrate 2 in β cells and brain causes obesity and diabetes,” Journal of Clinical Investigation, vol. 114, no. 7, pp. 908–916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Z. Stanger, A. J. Tanaka, and D. A. Melton, “Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver,” Nature, vol. 445, no. 7130, pp. 886–891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Nir, D. A. Melton, and Y. Dor, “Recovery from diabetes in mice by β cell regeneration,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2553–2561, 2007. View at Publisher · View at Google Scholar · View at Scopus