Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012 (2012), Article ID 484696, 8 pages
http://dx.doi.org/10.1155/2012/484696
Review Article

MicroRNAs in Insulin Resistance and Obesity

1O’Brien Institute, Melbourne, VIC 3065, Australia
2Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC 3065, Australia
3Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC 3065, Australia

Received 20 February 2012; Accepted 27 April 2012

Academic Editor: Anandwardhan Hardikar

Copyright © 2012 Michael D. Williams and Geraldine M. Mitchell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Colagiuri, “Diabesity: therapeutic options,” Diabetes, Obesity and Metabolism, vol. 12, no. 6, pp. 463–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Y. Ying, D. C. Chang, J. D. Miller, and S. L. Lin, “The microRNA: overview of the RNA gene that modulates gene functions,” Methods in Molecular Biology, vol. 342, pp. 1–18, 2006. View at Google Scholar · View at Scopus
  5. A. Tranzer and P. F. Stadler, “Evolution of microRNAs,” Methods in Molecular Biology, vol. 342, pp. 335–350, 2006. View at Google Scholar · View at Scopus
  6. B. J. Reinhart, F. J. Slack, M. Basson et al., “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans,” Nature, vol. 403, no. 6772, pp. 901–906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. V. Joglekar, V. M. Joglekar, and A. A. Hardikar, “Expression of islet-specific microRNAs during human pancreatic development,” Gene Expression Patterns, vol. 9, no. 2, pp. 109–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. N. Poy, L. Eliasson, J. Krutzfeldt et al., “A pancreatic islet-specific microRNA regulates insulin secretion,” Nature, vol. 432, no. 7014, pp. 226–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Krichevsky, K. S. King, C. P. Donahue, K. Khrapko, and K. S. Kosik, “A microRNA array reveals extensive regulation of microRNAs during brain development,” RNA, vol. 9, pp. 1274–1281, 2004. View at Google Scholar · View at Scopus
  10. M. V. Joglekar, V. S. Parekh, S. Mehta, R. R. Bhonde, and A. A. Hardikar, “MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3,” Developmental Biology, vol. 311, no. 2, pp. 603–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Bonner-Weir, “Morphological evidence for pancreatic polarity of β-cell within islets of Langerhans,” Diabetes, vol. 37, no. 5, pp. 616–621, 1988. View at Google Scholar · View at Scopus
  12. L. C. Murtaugh and D. A. Melton, “Genes, signals, and lineages in pancreas development,” Annual Review of Cell and Developmental Biology, vol. 19, pp. 71–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Steiner, A. Kim, K. Miller, and M. Hara, “Pancreatic islet plasticity: interspecies comparison of islet architecture and composition,” Islets, vol. 2, no. 3, pp. 135–145, 2010. View at Google Scholar · View at Scopus
  14. M. C. Jørgensen, J. Ahnfelt-Rønne, J. Hald, O. D. Madsen, P. Serup, and J. Hecksher-Sørensen, “An illustrated review of early pancreas development in the mouse,” Endocrine Reviews, vol. 28, no. 6, pp. 685–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. C. Lynn, P. Skewes-Cox, Y. Kosaka, M. T. McManus, B. D. Harfe, and M. S. German, “MicroRNA expression is required for pancreatic islet cell genesis in the mouse,” Diabetes, vol. 56, no. 12, pp. 2938–2945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Poitout, D. Hagman, R. Stein, I. Artner, R. P. Robertson, and J. S. Harmon, “Regulation of the insulin gene by glucose and fatty acids,” Journal of Nutrition, vol. 136, no. 4, pp. 873–876, 2006. View at Google Scholar · View at Scopus
  17. X. Tang, L. Muniappan, G. Tang, and S. Özcan, “Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription,” RNA, vol. 15, no. 2, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Hennessy, M. Clynes, P. B. Jeppesen, and L. O'Driscoll, “Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells,” Biochemical and Biophysical Research Communications, vol. 396, no. 2, pp. 457–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. N. Poy, J. Hausser, M. Trajkovski et al., “miR-375 maintains normal pancreatic α- and β-cell mass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5813–5818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Norlin, U. Ahlgren, and H. Edlund, “Nuclear factor-κβ activity in β-cells is required for glucose-stimulated insulin secretion,” Diabetes, vol. 54, no. 1, pp. 125–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. E. Ouaamari, N. Baroukh, G. A. Martens, P. Lebrun, D. Pipeleers, and E. Van Obberghen, “MiR-375 targets 3′l-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells,” Diabetes, vol. 57, no. 10, pp. 2708–2717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Taniguchi, B. Emanuelli, and C. R. Kahn, “Critical nodes in signalling pathways: insights into insulin action,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 85–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Hashimoto, Y. Kido, T. Uchida et al., “Ablation of PDK1 in pancreatic β cells induces diabetes as a result of loss of β cell mass,” Nature Genetics, vol. 38, no. 5, pp. 589–593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Plaisance, A. Abderrahmani, V. Perret-Menoud, P. Jacquemin, F. Lemaigre, and R. Regazzi, “MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells,” Journal of Biological Chemistry, vol. 281, no. 37, pp. 26932–26942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Gomi, S. Mizutani, K. Kasai, S. Itohara, and T. Izumi, “Granuphilin molecularly docks insulin granules to the fusion machinery,” Journal of Cell Biology, vol. 171, no. 1, pp. 99–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. S. Lee, N. J. Sund, M. Z. Vatamaniuk, F. M. Matschinsky, D. A. Stoffers, and K. H. Kaestner, “Foxa2 controls Pdx1 gene expression in pancreatic β-cells in vivo,” Diabetes, vol. 51, no. 8, pp. 2546–2551, 2002. View at Google Scholar · View at Scopus
  28. Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, and D. A. Melton, “In vivo reprogramming of adult pancreatic exocrine cells to β-cells,” Nature, vol. 455, no. 7213, pp. 627–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Akinci, A. Banga, L. V. Greder, J. R. Dutton, and J. M. Slack, “Reprogramming of pancreatic exocrine cells towards a beta cell character using Pdx1, Ngn3 and MafA,” Biochemical Journal, vol. 442, no. 3, pp. 539–550, 2011. View at Google Scholar
  30. N. Baroukh, M. A. Ravier, M. K. Loder et al., “MicroRNA-124a regulates foxa2 expression and intracellular signaling in pancreatic β-cell lines,” Journal of Biological Chemistry, vol. 282, no. 27, pp. 19575–19588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. A. Lantz, M. Z. Vatamaniuk, J. E. Brestelli, J. R. Friedman, F. M. Matschinsky, and K. H. Kaestner, “Foxa2 regulates multiple pathways of insulin secretion,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 512–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Lovis, S. Gattesco, and R. Regazzi, “Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs,” Biological Chemistry, vol. 389, no. 3, pp. 305–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. B. D. Mersey, P. Jin, and D. J. Danner, “Human microRNA (miR29b) expression controls the amount of branched chain α-ketoacid dehydrogenase complex in a cell,” Human Molecular Genetics, vol. 14, no. 22, pp. 3371–3377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. G. I. Shulman, “Cellular mechanisms of insulin resistance,” Journal of Clinical Investigation, vol. 106, no. 2, pp. 171–176, 2000. View at Google Scholar · View at Scopus
  35. G. F. Lewis, A. Carpentier, K. Adeli, and A. Giacca, “Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes,” Endocrine Reviews, vol. 23, no. 2, pp. 201–229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Raz, R. Eldor, S. Cernea, and E. Shafrir, “Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage,” Diabetes/Metabolism Research and Reviews, vol. 21, no. 1, pp. 3–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. E. D. Rosen and B. M. Spiegelman, “Adipocytes as regulators of energy balance and glucose homeostasis,” Nature, vol. 444, no. 7121, pp. 847–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. I. Lefterova and M. A. Lazar, “New developments in adipogenesis,” Trends in Endocrinology and Metabolism, vol. 20, no. 3, pp. 107–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. E. Lowe, S. O'Rahilly, and J. J. Rochford, “Adipogenesis at a glance,” Journal of Cell Science, vol. 124, no. 16, pp. 2681–2686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Fève, “Adipogenesis: cellular and molecular aspects,” Best Practice and Research, vol. 19, no. 4, pp. 483–499, 2005. View at Publisher · View at Google Scholar
  41. C. Esau, X. Kang, E. Peralta et al., “MicroRNA-143 regulates adipocyte differentiation,” Journal of Biological Chemistry, vol. 279, no. 50, pp. 52361–52365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Xie, B. Lim, and H. F. Lodish, “MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity,” Diabetes, vol. 58, no. 5, pp. 1050–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Kajimoto, H. Naraba, and N. Iwai, “MicroRNA and 3T3-L1 pre-adipocyte differentiation,” RNA, vol. 12, no. 9, pp. 1626–1632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Karbiener, C. Fischer, S. Nowitsch et al., “MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ,” Biochemical and Biophysical Research Communications, vol. 390, no. 2, pp. 247–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. K. Lee, M. J. Lee, K. Abdelmohsen et al., “miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression,” Molecular and Cellular Biology, vol. 31, no. 4, pp. 626–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Krishnaswami, S. Ravi-Kumar, and J. M. Lewis, “Thiazolidinediones: a 2010 perspective,” Permanente Journal, vol. 14, pp. 64–72, 2010. View at Google Scholar
  47. R. Martinelli, C. Nardelli, V. Pilone et al., “MiR-519d overexpression Is associated with human obesity,” Obesity, vol. 18, no. 11, pp. 2170–2176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Trajkovski, J. Hausser, J. Soutschek et al., “MicroRNAs 103 and 107 regulate insulin sensitivity,” Nature, vol. 474, no. 7353, pp. 649–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. A. He, L. Zhu, N. Gupta, Y. Chang, and F. Fang, “Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes,” Molecular Endocrinology, vol. 21, no. 11, pp. 2785–2794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Y. Ling, H. S. Ou, S. D. Feng et al., “Changes in microRNA profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 9, pp. e32–e39, 2009. View at Publisher · View at Google Scholar
  51. J. Xu and C. Wong, “A computational screen for mouse signaling pathways targeted by microRNA clusters,” RNA, vol. 14, no. 7, pp. 1276–1283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Guilherme, J. V. Virbasius, V. Puri, and M. P. Czech, “Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes,” Nature Reviews Molecular Cell Biology, vol. 9, no. 5, pp. 367–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. E. Cummings and M. W. Schwartz, “Genetics and pathophysiology of human obesity,” Annual Review of Medicine, vol. 54, pp. 453–471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Gustafson, S. Gogg, S. Hedjazifar, L. Jenndahl, A. Hammarstedt, and U. Smith, “Inflammation and impaired adipogenesis in hypertrophic obesity in man,” American Journal of Physiology, vol. 297, no. 5, pp. E999–E1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Takanabe, K. Ono, Y. Abe et al., “Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet,” Biochemical and Biophysical Research Communications, vol. 376, no. 4, pp. 728–732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Nakanishi, Y. Nakagawa, N. Tokushige et al., “The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice,” Biochemical and Biophysical Research Communications, vol. 385, no. 4, pp. 492–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Zhao, M. P. Keller, M. E. Rabaglia et al., “Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice,” Mammalian Genome, vol. 20, no. 8, pp. 476–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Klöting, S. Berthold, P. Kovacs et al., “MicroRNA expression in human omental and subcutaneous adipose tissue,” PLoS ONE, vol. 4, no. 3, Article ID e4699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Gilad, E. Meiri, Y. Yogev et al., “Serum microRNAs are promising novel biomarkers,” PLoS ONE, vol. 3, no. 9, Article ID e3148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Zampetaki, S. Kiechl, I. Drozdov et al., “Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes,” Circulation Research, vol. 107, no. 6, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Esau, S. Davis, S. F. Murray et al., “miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting,” Cell Metabolism, vol. 3, no. 2, pp. 87–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. J. A. Frost and E. N. Olson, “Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 21075–21080, 2011. View at Publisher · View at Google Scholar
  65. L. P. Ford, “Using synthetic miRNA mimics for diverting cell fate: a possibility of miRNA-based therapeutics?” Leukemia Research, vol. 30, no. 5, pp. 511–513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. F. Wiggins, L. Ruffino, K. Kelnar et al., “Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34,” Cancer Research, vol. 70, no. 14, pp. 5923–5930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Chen, G. I. Mias, J. Li-Pook-Than et al., “Personal omics profiling reveals dynamic molecular and medical phenotypes,” Cell, vol. 148, no. 6, pp. 1293–1307, 2012. View at Publisher · View at Google Scholar