Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 618396, 11 pages
http://dx.doi.org/10.1155/2012/618396
Review Article

Endoplasmic Reticulum Stress in the β-Cell Pathogenesis of Type 2 Diabetes

1School of Biological Sciences, University of Ulsan, Daehak-ro, Nam-gu, Ulsan 680-749, Republic of Korea
2Department of Medicine, Graduate School, University of Ulsan, Seoul, 138-736, Republic of Korea
3Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, USA

Received 16 May 2011; Accepted 6 July 2011

Academic Editor: In-Kyu Lee

Copyright © 2012 Sung Hoon Back et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. Steil, N. Trivedi, J.-C. Jonas et al., “Adaptation of β-cell mass to substrate oversupply: enhanced function with normal gene expression,” American Journal of Physiology, vol. 280, no. 5, pp. E788–E796, 2001. View at Google Scholar
  3. T. L. Jetton, J. Lausier, K. LaRock et al., “Mechanisms of compensatory β-cell growth in insulin-resistant rats: roles of Akt kinase,” Diabetes, vol. 54, no. 8, pp. 2294–2304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Q. Liu, T. L. Jetton, and J. L. Leahy, “β-cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic zucker fatty rats,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39163–39168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Chen, H. Hosokawa, L. M. Bumbalo, and J. L. Leahy, “Mechanism of compensatory hyperinsulinemia in normoglycemic insulin- resistant spontaneously hypertensive rats. Augmented enzymatic activity of glucokinase in β-cells,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 399–404, 1994. View at Google Scholar · View at Scopus
  6. A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza, and P. C. Butler, “β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes,” Diabetes, vol. 52, no. 1, pp. 102–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Prentki and C. J. Nolan, “Islet β cell failure in type 2 diabetes,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1802–1812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Cnop, N. Welsh, J.-C. Jonas, A. Jörns, S. Lenzen, and D. L. Eizirik, “Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities,” Diabetes, vol. 54, supplement 2, pp. S97–S107, 2005. View at Publisher · View at Google Scholar
  9. V. Poitout and R. P. Robertson, “Minireview: secondary β-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity,” Endocrinology, vol. 143, no. 2, pp. 339–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Cnop, M. Igoillo-Esteve, D. A. Cunha, L. Ladrière, and D. L. Eizirik, “An update on lipotoxic endoplasmic reticulum stress in pancreatic β-cells,” Biochemical Society Transactions, vol. 36, no. 5, pp. 909–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. L. Eizirik, A. K. Cardozo, and M. Cnop, “The role for endoplasmic reticulum stress in diabetes mellitus,” Endocrine Reviews, vol. 29, no. 1, pp. 42–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Haataja, T. Gurlo, C.-J. Huang, and P. C. Butler, “Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis,” Endocrine Reviews, vol. 29, no. 3, pp. 303–316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Scheuner and R. J. Kaufman, “The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes,” Endocrine Reviews, vol. 29, no. 3, pp. 317–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. P. Robertson, “Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42351–42354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Meusser, C. Hirsch, E. Jarosch, and T. Sommer, “ERAD: the long road to destruction,” Nature Cell Biology, vol. 7, no. 8, pp. 766–772, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. B. Kruse, J. L. Brodsky, and A. A. McCracken, “Autophagy: an ER protein quality control process,” Autophagy, vol. 2, no. 2, pp. 135–137, 2006. View at Google Scholar · View at Scopus
  18. D. T. Rutkowski, S. M. Arnold, C. N. Miller et al., “Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins,” PLoS Biology, vol. 4, no. 11, p. e374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. T. Rutkowski and R. J. Kaufman, “That which does not kill me makes me stronger: adapting to chronic ER stress,” Trends in Biochemical Sciences, vol. 32, no. 10, pp. 469–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Zhang and R. J. Kaufman, “The unfolded protein response: a stress signaling pathway critical for health and disease,” Neurology, vol. 66, no. 2, pp. S102–S109, 2006. View at Google Scholar · View at Scopus
  21. I. Kim, W. Xu, and J. C. Reed, “Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities,” Nature Reviews Drug Discovery, vol. 7, no. 12, pp. 1013–1030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. R. Laybutt, A. M. Preston, M. C. Åkerfeldt et al., “Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes,” Diabetologia, vol. 50, no. 4, pp. 752–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Marchetti, M. Bugliani, R. Lupi et al., “The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients,” Diabetologia, vol. 50, no. 12, pp. 2486–2494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, and D. Ron, “Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response,” Nature Cell Biology, vol. 2, no. 6, pp. 326–332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Bernales, F. R. Papa, and P. Walter, “Intracellular signaling by the unfolded protein response,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 487–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Marciniak and D. Ron, “Endoplasmic reticulum stress signaling in disease,” Physiological Reviews, vol. 86, no. 4, pp. 1133–1149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. P. Harding, I. Novoa, Y. Zhang et al., “Regulated translation initiation controls stress-induced gene expression in mammalian cells,” Molecular Cell, vol. 6, no. 5, pp. 1099–1108, 2000. View at Google Scholar · View at Scopus
  28. H. Y. Jiang, S. A. Wek, B. C. McGrath et al., “Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response,” Molecular and Cellular Biology, vol. 24, no. 3, pp. 1365–1377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Scheuner, B. Song, E. McEwen et al., “Translational control is required for the unfolded protein response and in vivo glucose homeostasis,” Molecular Cell, vol. 7, no. 6, pp. 1165–1176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. H. P. Harding, H. Zeng, Y. Zhang et al., “Diabetes mellitus and exocrine pancreatic dysfunction in Perk-/- mice reveals a role for translational control in secretory cell survival,” Molecular Cell, vol. 7, no. 6, pp. 1153–1163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Scheuner, D. V. Mierde, B. Song et al., “Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis,” Nature Medicine, vol. 11, no. 7, pp. 757–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. P. Herbert, “PERK in the life and death of the pancreatic β-cell,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1205–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. H. Back, D. Scheuner, J. Han et al., “Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells,” Cell Metabolism, vol. 10, no. 1, pp. 13–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. P. Harding, Y. Zhang, and D. Ron, “Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase,” Nature, vol. 397, no. 6716, pp. 271–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Oyadomari, A. Koizumi, K. Takeda et al., “Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes,” Journal of Clinical Investigation, vol. 109, no. 4, pp. 525–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Song, D. Scheuner, D. Ron, S. Pennathur, and R. J. Kaufman, “Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes,” Journal of Clinical Investigation, vol. 118, no. 10, pp. 3378–3389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Calfon, H. Zeng, F. Urano et al., “IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA,” Nature, vol. 415, no. 6867, pp. 92–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Shen, R. E. Ellis, K. Lee et al., “Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development,” Cell, vol. 107, no. 7, pp. 893–903, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori, “XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor,” Cell, vol. 107, no. 7, pp. 881–891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. A. L. Shaffer, M. Shapiro-Shelef, N. N. Iwakoshi et al., “XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation,” Immunity, vol. 21, no. 1, pp. 81–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. H. Lee, N. N. Iwakoshi, and L. H. Glimcher, “XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7448–7459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Acosta-Alvear, Y. Zhou, A. Blais et al., “XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks,” Molecular Cell, vol. 27, no. 1, pp. 53–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. K. L. Lipson, S. G. Fonseca, S. Ishigaki et al., “Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1,” Cell Metabolism, vol. 4, no. 3, pp. 245–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. G. C. Shore, F. R. Papa, and S. A. Oakes, “Signaling cell death from the endoplasmic reticulum stress response,” Current Opinion in Cell Biology, vol. 23, no. 2, pp. 143–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Urano, X. Wang, A. Bertolotti et al., “Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1,” Science, vol. 287, no. 5453, pp. 664–666, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Han, A. G. Lerner, L. Vande Walle et al., “IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates,” Cell, vol. 138, no. 3, pp. 562–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. K. L. Lipson, S. G. Fonseca, S. Ishigaki et al., “Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1,” Cell Metabolism, vol. 4, no. 3, pp. 245–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Q. Li, P. Baumeister, B. Roy et al., “ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1,” Molecular and Cellular Biology, vol. 20, no. 14, pp. 5096–5106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Chen, J. Shen, and R. Prywes, “The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the er to the Golgi,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 13045–13052, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Shen, X. Chen, L. Hendershot, and R. Prywes, “ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals,” Developmental Cell, vol. 3, no. 1, pp. 99–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Ye, R. B. Rawson, R. Komuro et al., “ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs,” Molecular Cell, vol. 6, no. 6, pp. 1355–1364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Wu, D. T. Rutkowski, M. Dubois et al., “ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress,” Developmental Cell, vol. 13, no. 3, pp. 351–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Yamamoto, T. Sato, T. Matsui et al., “Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1,” Developmental Cell, vol. 13, no. 3, pp. 365–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Y. Seo, D. K. Yong, K. M. Lee et al., “Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases insulin gene expression via up-regulation of orphan nuclear receptor small heterodimer partner,” Endocrinology, vol. 149, no. 8, pp. 3832–3841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. S. Hegde and H. L. Ploegh, “Quality and quantity control at the endoplasmic reticulum,” Current Opinion in Cell Biology, vol. 22, no. 4, pp. 437–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Ellgaard and A. Helenius, “Quality control in the endoplasmic reticulum,” Nature Reviews Molecular Cell Biology, vol. 4, no. 3, pp. 181–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. S. W. Fewell, K. J. Travers, J. S. Weissman, and J. L. Brodsky, “The action of molecular chaperones in the early secretory pathway,” Annual Review of Genetics, vol. 35, pp. 149–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. E. S. Trombetta and A. J. Parodi, “Quality control and protein folding in the secretory pathway,” Annual Review of Cell and Developmental Biology, vol. 19, pp. 649–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Bukau and A. L. Horwich, “The Hsp70 and Hsp60 chaperone machines,” Cell, vol. 92, no. 3, pp. 351–366, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Helenius and M. Aebi, “Roles of N-linked glycans in the endoplasmic reticulum,” Annual Review of Biochemistry, vol. 73, pp. 1019–1049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Hosokawa, I. Wada, K. Hasegawa et al., “A novel ER α-mannosidase-like protein accelerates ER-associated degradation,” EMBO Reports, vol. 2, no. 5, pp. 415–422, 2001. View at Google Scholar · View at Scopus
  62. K. Nakatsukasa, S. I. Nishikawa, N. Hosokawa, K. Nagata, and T. Endo, “Mnl1p, an α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins,” Journal of Biological Chemistry, vol. 276, no. 12, pp. 8635–8638, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. C. A. Jakob, D. Bodmer, U. Spirig et al., “Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast,” EMBO Reports, vol. 2, no. 5, pp. 423–430, 2001. View at Google Scholar · View at Scopus
  64. D. N. Hebert, R. Bernasconi, and M. Molinari, “ERAD substrates: which way out?” Seminars in Cell and Developmental Biology, vol. 21, no. 5, pp. 526–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Carvalho, A. M. Stanley, and T. A. Rapoport, “Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase hrd1p,” Cell, vol. 143, no. 4, pp. 579–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Ye, Y. Shibata, M. Kikkert, S. Van Voorden, E. Wiertz, and T. A. Rapoport, “Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14132–14138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Costes, C.-J. Huang, T. Gurlo et al., “β-cell dysfunctional ERAD/ubiquitin/proteasome system in type 2 diabetes mediated by islet amyloid polypeptide-induced UCH-L1 deficiency,” Diabetes, vol. 60, no. 1, pp. 227–238, 2011. View at Publisher · View at Google Scholar
  68. S. G. Fonseca, S. Ishigaki, C. M. Oslowski et al., “Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells,” Journal of Clinical Investigation, vol. 120, no. 3, pp. 744–755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Hetz, P. Thielen, S. Matus et al., “XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy,” Genes and Development, vol. 23, no. 19, pp. 2294–2306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. P. E. Stromhaug and D. J. Klionsky, “Approaching the molecular mechanism of autophagy,” Traffic, vol. 2, no. 8, pp. 524–531, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Kouroku, E. Fujita, I. Tanida et al., “ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation,” Cell Death and Differentiation, vol. 14, no. 2, pp. 230–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. S. W. Kang, N. S. Rane, S. J. Kim, J. L. Garrison, J. Taunton, and R. S. Hegde, “Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway,” Cell, vol. 127, no. 5, pp. 999–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. R. S. Hegde and S. W. Kang, “The concept of translocational regulation,” Journal of Cell Biology, vol. 182, no. 2, pp. 225–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. R. J. Kaufman, S. H. Back, B. Song, J. Han, and J. Hassler, “The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum, prevent oxidative stress and preserve differentiation in β-cells,” Diabetes, Obesity and Metabolism, vol. 12, supplement 2, pp. 99–107, 2010. View at Publisher · View at Google Scholar
  75. C. D. Wolcott and M. L. Rallison, “Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia,” The Journal of Pediatrics, vol. 80, no. 2, pp. 292–297, 1972. View at Google Scholar · View at Scopus
  76. H. Stoss, H. J. Pesch, and B. Pontz, “Wolcott-Rallison syndrome: diabetes mellitus and spondyloepiphyseal dysplasia,” European Journal of Pediatrics, vol. 138, no. 2, pp. 120–129, 1982. View at Google Scholar · View at Scopus
  77. C. M. Thornton, “Autopsy findings in the Wolcott-Rallison syndrome,” Pediatric Pathology and Laboratory Medicine, vol. 17, no. 3, pp. 487–496, 1997. View at Publisher · View at Google Scholar
  78. P. Castelnau, M. Le Merrer, C. Diatloff-Zito, E. Marquis, M. J. Tête, and J. J. Robert, “Wolcott-Rallison syndrome: a case with endocrine and exocrine pancreatic deficiency and pancreatic hypotrophy,” European Journal of Pediatrics, vol. 159, no. 8, pp. 631–633, 2000. View at Google Scholar · View at Scopus
  79. P. Holm, C. Julier, I. Kockum et al., “A genomewide scan for type 1-diabetes susceptibility in scandinavian families: identification of new loci with evidence of interactions,” American Journal of Human Genetics, vol. 69, no. 6, pp. 1301–1313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. R. A. Allotey, V. Mohan, M. F. McDermott et al., “The EIF2AK3 gene region and type I diabetes in subjects from South India,” Genes and Immunity, vol. 5, no. 8, pp. 648–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Zhang, B. McGrath, S. Li et al., “The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas,” Molecular and Cellular Biology, vol. 22, no. 11, pp. 3864–3874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Zhang, D. Feng, Y. Li, K. Iida, B. McGrath, and D. R. Cavener, “PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis,” Cell Metabolism, vol. 4, no. 6, pp. 491–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. R. C. Wek and D. R. Cavener, “Translational control and the unfolded protein response,” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2357–2371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. T. G. Barrett and S. E. Bundey, “Wolfram (DIDMOAD) syndrome,” Journal of Medical Genetics, vol. 34, no. 10, pp. 838–841, 1997. View at Google Scholar · View at Scopus
  85. F. Khanim, J. Kirk, F. Latif, and T. G. Barrett, “WFS1/wolframin mutations, wolfram syndrome, and associated diseases,” Human Mutation, vol. 17, no. 5, pp. 357–367, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Cryns, T. A. Sivakumaran, J. M. W. Van den Ouweland et al., “Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease,” Human Mutation, vol. 22, no. 4, pp. 275–287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Yamada, H. Ishihara, A. Tamura et al., “WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic β-cells,” Human Molecular Genetics, vol. 15, no. 10, pp. 1600–1609, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Ishihara, S. Takeda, A. Tamura et al., “Disruption of the WFS1 gene in mice causes progressive β-cell loss and impaired stimulus—secretion coupling in insulin secretion,” Human Molecular Genetics, vol. 13, no. 11, pp. 1159–1170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. A. C. Riggs, E. Bernal-Mizrachi, M. Ohsugi et al., “Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis,” Diabetologia, vol. 48, no. 11, pp. 2313–2321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Zatyka, C. Ricketts, G. da Silva Xavier et al., “Sodium-potassium ATPase β1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress,” Human Molecular Genetics, vol. 17, no. 2, pp. 190–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. D. T. Rutkowski, S. W. Kang, A. G. Goodman et al., “The role of p58IPK in protecting the stressed endoplasmic reticulum,” Molecular Biology of the Cell, vol. 18, no. 9, pp. 3681–3691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. W. C. Ladiges, S. E. Knoblaugh, J. F. Morton et al., “Pancreatic β-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK,” Diabetes, vol. 54, no. 4, pp. 1074–1081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Oyadomari, C. Yun, E. A. Fisher et al., “Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload,” Cell, vol. 126, no. 4, pp. 727–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. R. L. Hanson, M. G. Ehm, D. J. Pettitt et al., “An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians,” American Journal of Human Genetics, vol. 63, no. 4, pp. 1130–1138, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Thameem, V. S. Farook, C. Bogardus, and M. Prochazka, “Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians,” Diabetes, vol. 55, no. 3, pp. 839–842, 2006. View at Google Scholar · View at Scopus
  96. S. J. R. Meex, M. M. J. Van Greevenbroek, T. A. Ayoubi et al., “Activating transcription factor 6 polymorphisms and haplotypes are associated with impaired glucose homeostasis and type 2 diabetes in Dutch Caucasians,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 7, pp. 2720–2725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. R. H. Unger, “Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications,” Diabetes, vol. 44, no. 8, pp. 863–870, 1995. View at Google Scholar · View at Scopus
  98. A. Carpentier, S. D. Mittelman, R. N. Bergman, A. Giacca, and G. F. Lewis, “Prolonged elevation of plasma free fatty acids impairs pancreatic β- cell function in obese nondiabetic humans but not in individuals with type 2,” Diabetes, vol. 49, no. 3, pp. 399–408, 2000. View at Google Scholar · View at Scopus
  99. M. Cnop, L. Ladrière, M. Igoillo-Esteve, R. F. Moura, and D. A. Cunha, “Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction,” Diabetes, Obesity and Metabolism, vol. 12, supplement 2, pp. 76–82, 2010. View at Publisher · View at Google Scholar
  100. M. Cnop, “Fatty acids and glucolipotoxicity in the pathogenesis of Type 2 diabetes,” Biochemical Society Transactions, vol. 36, no. 3, pp. 348–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Bachar, Y. Ariav, M. Ketzinel-Gilad, E. Cerasi, N. Kaiser, and G. Leibowitz, “Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic β-cells via activation of mTORC1,” PLoS ONE, vol. 4, no. 3, article e4954, 2009. View at Publisher · View at Google Scholar
  102. E. Karaskov, C. Scott, L. Zhang, T. Teodoro, M. Ravazzola, and A. Volchuk, “Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis,” Endocrinology, vol. 147, no. 7, pp. 3398–3407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. I. Kharroubi, L. Ladrière, A. K. Cardozo, Z. Dogusan, M. Cnop, and D. L. Eizirik, “Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress,” Endocrinology, vol. 145, no. 11, pp. 5087–5096, 2004. View at Publisher · View at Google Scholar
  104. D. A. Cunha, P. Hekerman, L. Ladrière et al., “Initiation and execution of lipotoxic ER stress in pancreatic β-cells,” Journal of Cell Science, vol. 121, no. 14, pp. 2308–2318, 2008. View at Publisher · View at Google Scholar
  105. N. M. Borradaile, X. Han, J. D. Harp, S. E. Gale, D. S. Ory, and J. E. Schaffer, “Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death,” Journal of Lipid Research, vol. 47, no. 12, pp. 2726–2737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. A. M. Preston, E. Gurisik, C. Bartley, D. R. Laybutt, and T. J. Biden, “Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload,” Diabetologia, vol. 52, no. 11, pp. 2369–2373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. A. K. Busch, E. Gurisik, D. V. Cordery et al., “Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic β-cells from lipoapoptosis,” Diabetes, vol. 54, no. 10, pp. 2917–2924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. C. D. Green and L. K. Olson, “Modulation of palmitate-induced endoplasmic reticulum stress and apoptosis in pancreatic β-cells by stearoyl-CoA desaturase and Elovl6,” American Journal of Physiology, vol. 300, no. 4, pp. 640–649, 2011. View at Publisher · View at Google Scholar
  109. J. B. Flowers, M. E. Rabaglia, K. L. Schueler et al., “Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice,” Diabetes, vol. 56, no. 5, pp. 1228–1239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. F. C. Schuit, P. A. In 't Veld, and D. G. Pipeleers, “Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 11, pp. 3865–3869, 1988. View at Google Scholar · View at Scopus
  111. F. C. Schuit, R. Kiekens, and D. G. Pipeleers, “Measuring the balance between insulin synthesis and insulin release,” Biochemical and Biophysical Research Communications, vol. 178, no. 3, pp. 1182–1187, 1991. View at Publisher · View at Google Scholar
  112. D. Vander Mierde, D. Scheuner, R. Quintens et al., “Glucose activates a protein phosphatase-1-mediated signaling pathway to enhance overall translation in pancreatic β-cells,” Endocrinology, vol. 148, no. 2, pp. 609–617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Wang, T. Takeuchi, S. Tanaka et al., “A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse,” Journal of Clinical Investigation, vol. 103, no. 1, pp. 27–37, 1999. View at Google Scholar
  114. J. R. Allen, L. X. Nguyen, K. E.G. Sargent, K. L. Lipson, A. Hackett, and F. Urano, “High ER stress in β-cells stimulates intracellular degradation of misfolded insulin,” Biochemical and Biophysical Research Communications, vol. 324, no. 1, pp. 166–170, 2004. View at Publisher · View at Google Scholar
  115. J. I. Nozaki, H. Kubota, H. Yoshida et al., “The endoplasmic reticulum stress response is stimulated through the continuous activation of transcription factors ATF6 and XBP1 in Ins2+/Akita pancreatic β cells,” Genes to Cells, vol. 9, no. 3, pp. 261–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. G. M. Reaven, C. Hollenbeck, C. Y. Jeng, M. S. Wu, and Y. D. I. Chen, “Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM,” Diabetes, vol. 37, no. 8, pp. 1020–1024, 1988. View at Google Scholar · View at Scopus
  117. V. Poitout and R. P. Robertson, “Glucolipotoxicity: fuel excess and β-cell dysfunction,” Endocrine Reviews, vol. 29, no. 3, pp. 351–366, 2008. View at Publisher · View at Google Scholar
  118. G. Leibowitz, E. Bachar, M. Shaked et al., “Glucose regulation of β-cell stress in type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 12, supplement 2, pp. 66–75, 2010. View at Publisher · View at Google Scholar
  119. R. P. Robertson, “Oxidative stress and impaired insulin secretion in type 2 diabetes,” Current Opinion in Pharmacology, vol. 6, no. 6, pp. 615–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. B. P. Tu and J. S. Weissman, “Oxidative protein folding in eukaryotes: mechanisms and consequences,” Journal of Cell Biology, vol. 164, no. 3, pp. 341–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. J. D. Malhotra and R. J. Kaufman, “Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2277–2293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. C. M. Haynes, E. A. Titus, and A. A. Cooper, “Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death,” Molecular Cell, vol. 15, no. 5, pp. 767–776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Li, M. Mongillo, K. T. Chin et al., “Role of ERO1-α-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis,” Journal of Cell Biology, vol. 186, no. 6, pp. 783–792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” American Journal of Physiology, vol. 287, no. 4, pp. C817–C833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. K. L. Lipson, R. Ghosh, and F. Urano, “The role of IRE1α in the degradation of insulin mRNA in pancreatic β-cells,” PLoS ONE, vol. 3, no. 2, article e1648, 2008. View at Publisher · View at Google Scholar