Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 653678, 6 pages
http://dx.doi.org/10.1155/2012/653678
Research Article

Oxidative/Nitrosative Stress and Protein Damages in Aqueous Humor of Hyperglycemic Rabbits: Effects of Two Oral Antidiabetics, Pioglitazone and Repaglinide

Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland

Received 14 October 2011; Revised 28 December 2011; Accepted 29 December 2011

Academic Editor: Pietro Galassetti

Copyright © 2012 Anna Gumieniczek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Geraldine, B. B. Sneha, R. Elanchezhian et al., “Prevention of selenite-induced cataractogenesis by acetyl-L-carnitine: an experimental study,” Experimental Eye Research, vol. 83, no. 6, pp. 1340–1349, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. I. Grattagliano, G. Vendemiale, F. Boscia, T. Micelli-Ferrari, L. Cardia, and E. Altomare, “Oxidative retinal products and ocular damages in diabetic patients,” Free Radical Biology and Medicine, vol. 25, no. 3, pp. 369–372, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. S. E. Ohia, C. A. Opere, and A. M. LeDay, “Pharmacological consequences of oxidative stress in ocular tissues,” Mutation Research, vol. 579, no. 1-2, pp. 22–36, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. N. Ahmed, R. Babaei-Jadidi, and S. K. Howell, “Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes,” Diabetologia, vol. 48, no. 8, pp. 1590–1603, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. A. Kowluru, “Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated,” Acta Diabetologica, vol. 38, no. 4, pp. 179–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Toda and M. Nakanishi-Toda, “Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 26, no. 3, pp. 205–238, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. X. M. Zhang, K. Ohishi, and T. Hiramitsu, “Microdialysis measurement of ascorbic acid in rabbit vitreous after photodynamic reaction,” Experimental Eye Research, vol. 73, no. 3, pp. 303–309, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. B. Anderstam, A. C. Bragfors-Helin, A. Valli, P. Stenvinkel, B. Lindholm, and M. E. Suliman, “Modification of the oxidative stress biomarker AOPP assay: application in uremic samples,” Clinica Chimica Acta, vol. 393, no. 2, pp. 114–118, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. H. Kaneda, J. Taguchi, K. Ogasawara, T. Aizawa, and M. Ohno, “Increased level of advanced oxidation protein products in patients with coronary artery disease,” Atherosclerosis, vol. 162, no. 1, pp. 221–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Piwowar, M. Knapik-Kordecka, and M. Warwas, “AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 77, no. 2, pp. 188–192, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Stefek, Z. Kyselova, L. Rackova, and L. Krizanova, “Oxidative modification of rat eye lens proteins by peroxyl radicals in vitro: protection by the chain-breaking antioxidants stobadine and trolox,” Biochimica et Biophysica Acta, vol. 1741, no. 1-2, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. A. Madsen-Bouterse and R. A. Kowluru, “Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives,” Reviews in Endocrine and Metabolic Disorders, vol. 9, no. 4, pp. 315–327, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. I. Inoue, S. Goto, T. Matsunaga et al., “The ligands/activators for peroxisome proliferator-activated receptor α (PPARα) and PPARγ increase Cu+2,Zn+2-superoxide dismutase and decrease p22phox message expression in primary endothelial cells,” Metabolism, vol. 50, no. 1, pp. 3–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Majithiya, A. N. Paramar, and R. Balaraman, “Pioglitazone, a PPARγ agonist, restores endothelial function in aorta of streptozotocin-induced diabetic rats,” Cardiovascular Research, vol. 66, no. 1, pp. 150–161, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Li, L. Xu, J. Shen et al., “Effects of short-term therapy with different insulin secretagogues on glucose metabolism, lipid parameters and oxidative stress in newly diagnosed type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 88, no. 1, pp. 42–47, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. D. Manzella, A. M. Abbatecola, R. Grella, and G. Paolisso, “Repaglinide administration improves brachial reactivity in type 2 diabetic patients,” Diabetes Care, vol. 28, no. 2, pp. 366–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Tankova, D. Koev, L. Dakovska, and G. Kirilov, “The effect of repaglinide on insulin secretion and oxidative stress in type 2 diabetic patients,” Diabetes Research and Clinical Practice, vol. 59, no. 1, pp. 43–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kyaw, “A simple colorimetric method for ascorbic acid determination in blood plasma,” Clinica Chimica Acta, vol. 86, no. 2, pp. 153–157, 1978. View at Google Scholar · View at Scopus
  19. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  20. S. M. Ferreira, S. F. Lerner, R. Brunzini, P. A. Evelson, and S. F. Llesuy, “Oxidative stress markers in aqueous humor of glaucoma patients,” American Journal of Ophthalmology, vol. 137, no. 1, pp. 62–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Livingstone and J. Davis, “Targeting therapeutics against glutathione depletion in diabetes and its complications,” The British Journal of Diabetes and Vascular Disease, vol. 7, no. 6, pp. 258–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Fujii, R. Hamaoka, J. Fujii, and N. Taniguchi, “Redox capacity of cells affects inactivation of glutathione reductase by nitrosative stress,” Archives of Biochemistry and Biophysics, vol. 378, no. 1, pp. 123–130, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. P. Cohen, E. Hud, E. Shea, and C. W. Shearman, “Vitreous fluid of db/db mice exhibits alterations in angiogenic and metabolic factors consistent with early diabetic retinopathy,” Ophthalmic Research, vol. 40, no. 1, pp. 5–9, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. Aslan, A. Cort, and I. Yucel, “Oxidative and nitrative stress markers in glaucoma,” Free Radical Biology and Medicine, vol. 45, no. 4, pp. 367–376, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Nguyen-Khoa, Z. A. Massy, J. P. de Bandt et al., “Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment,” Nephrology Dialysis Transplantation, vol. 16, no. 2, pp. 335–340, 2001. View at Google Scholar · View at Scopus
  27. M. Kalousova, J. Skrha, and T. Zima, “Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus,” Physiological Research, vol. 51, no. 6, pp. 597–604, 2002. View at Google Scholar · View at Scopus
  28. T. Shiojiri, K. Wada, A. Nakajima et al., “PPARγ ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice,” European Journal of Pharmacology, vol. 448, no. 2-3, pp. 231–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Sung, S. Park, B. P. Yu, and H. Y. Chung, “Amelioration of age-related inflammation and oxidative stress by PPARγ activator: Suppression of NF-κB by 2,4-thiazolidinedione,” Experimental Gerontology, vol. 41, no. 6, pp. 590–599, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. Tao, H. Liu, E. Gao et al., “Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-γ agonist in hypercholesterolemia,” Circulation, vol. 108, no. 22, pp. 2805–2811, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Gumieniczek, Ł. Komsta, and M. R. Chehab, “Effects of two oral antidiabetics, pioglitazone and repaglinide, on aconitase inactivation, inflammation and oxidative/nitrosative stress in tissues under alloxan-induced hyperglycemia,” European Journal of Pharmacology, vol. 659, no. 1, pp. 89–93, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. A. Gumieniczek, M. Krzywdzińska, and M. Nowak, “Modulation of nitrosative/oxidative stress in the lung of hyperglycemic rabbits by two antidiabetics, pioglitazone and repaglinide,” Experimental Lung Research, vol. 35, no. 5, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. B. Gross and B. Staels, “PPAR agonists: multimodal drugs for the treatment of type-2 diabetes,” Best Practice and Research in Clinical Endocrinology and Metabolism, vol. 21, no. 4, pp. 687–710, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. R. Assaloni, R. da Ros, L. Quagliaro et al., “Effects of S21403 (mitiglinide) on postprandial generation of oxidative stress and inflammation in type 2 diabetic patients,” Diabetologia, vol. 48, no. 9, pp. 1919–1924, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. J. E. da Silva-Santos, M. C. Santos-Silva, F. Cunha, and J. Assreuy, “The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation,” The Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 3, pp. 946–951, 2002. View at Publisher · View at Google Scholar · View at Scopus