Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012 (2012), Article ID 789730, 8 pages
http://dx.doi.org/10.1155/2012/789730
Research Article

Inhibition of Aldose Reductase Activates Hepatic Peroxisome Proliferator-Activated Receptor-α and Ameliorates Hepatosteatosis in Diabetic db/db Mice

1State Key Laboratory for Stress Cellular Biology and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, China
2School of Life Sciences, and Fujian Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan 364000, China
3School of Nursing, The Third Military Medical University, Chongqing 400038, China
4Xiamen University Laboratory Animal Center, Xiamen University, Xiamen 361005, China

Received 6 June 2011; Revised 23 August 2011; Accepted 29 August 2011

Academic Editor: Konstantinos Kantartzis

Copyright © 2012 Longxin Qiu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. G. Hers, “Aldose reductase,” Biochimica et Biophysica Acta, vol. 37, no. 1, pp. 120–126, 1960. View at Google Scholar · View at Scopus
  2. R. S. Clements, “The polyol pathway. A historical review,” Drugs, vol. 32, no. 2, pp. 3–5, 1986. View at Google Scholar · View at Scopus
  3. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Oates and B. L. Mylari, “Aldose reductase inhibitors: therapeutic implications for diabetic complications,” Expert Opinion on Investigational Drugs, vol. 8, no. 12, pp. 2095–2119, 1999. View at Google Scholar · View at Scopus
  5. P. Alexiou, K. Pegklidou, M. Chatzopoulou, I. Nicolaou, and V. J. Demopoulos, “Aldose reductase enzyme and its implication to major health problems of the 21st century,” Current Medicinal Chemistry, vol. 16, no. 6, pp. 734–752, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. B. Markus, M. Raducha, and H. Harris, “Tissue distribution of mammalian aldose reductase and related enzymes,” Biochemical Medicine, vol. 29, no. 1, pp. 31–45, 1983. View at Google Scholar · View at Scopus
  7. R. S. Clements, J. P. Weaver, and A. L. Winegrad, “The distribution of polyol: NADP oxidoreductase in mammalian tissues,” Biochemical and Biophysical Research Communications, vol. 37, no. 2, pp. 347–353, 1969. View at Google Scholar · View at Scopus
  8. J. Jeffery and H. Jornvall, “Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 4 I, pp. 901–905, 1983. View at Google Scholar · View at Scopus
  9. N. Roglans, L. Vila, M. Farre et al., “Impairment of hepatic Stat-3 activation and reduction of PPARa activity in fructose-fed rats,” Hepatology, vol. 45, pp. 778–788, 2007. View at Google Scholar
  10. M. Takahashi, A. Hoshi, J. Fujii et al., “Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma,” Japanese Journal of Cancer Research, vol. 87, no. 4, pp. 337–341, 1996. View at Google Scholar · View at Scopus
  11. M. Takahashi, J. Fujii, E. Miyoshi, A. Hoshi, and N. Taniguchi, “Elevation of aldose reductase gene expression in rat primary hepatoma and hepatoma cell lines: implication in detoxification of cytotoxic aldehydes,” International Journal of Cancer, vol. 62, no. 6, pp. 749–754, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. K. W. Y. Lee, B. C. B. Ko, Z. Jiang, D. Cao, and S. S. M. Chung, “Overexpression of aldose reductase in liver cancers may contribute to drug resistance,” Anti-Cancer Drugs, vol. 12, no. 2, pp. 129–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Zeindl-Eberhart, S. Haraida, S. Liebmann et al., “Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas,” Hepatology, vol. 39, no. 2, pp. 540–549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Cusi, “Nonalcoholic fatty liver disease in type 2 diabetes mellitus,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 16, no. 2, pp. 141–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Sanyal, “NASH: a global health problem,” Hepatology Research, vol. 41, no. 7, pp. 670–674, 2011. View at Publisher · View at Google Scholar
  16. J. Xu, J. Zhang, S. Cai, J. Dong, J. Y. Yang, and Z. Chen, “Metabonomics studies of intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning 1H NMR spectroscopy,” Analytical and Bioanalytical Chemistry, vol. 393, no. 6-7, pp. 1657–1668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Qiu, X. Wu, J. F. L. Chau et al., “Aldose reductase regulates hepatic peroxisome proliferator-activated receptor α phosphorylation and activity to impact lipid homeostasis,” Journal of Biological Chemistry, vol. 283, no. 25, pp. 17175–17183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Yabe-Nishimura, “Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications,” Pharmacological Reviews, vol. 50, no. 1, pp. 21–33, 1998. View at Google Scholar · View at Scopus
  19. T. Kawasaki, H. Akanuma, and T. Yamanouchi, “Increased fructose concentrations in blood and urine in patients with diabetes,” Diabetes Care, vol. 25, no. 2, pp. 353–357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Yoshii, H. Uchino, C. Ohmura, K. Watanabe, Y. Tanaka, and R. Kawamori, “Clinical usefulness of measuring urinary polyol excretion by gas-chromatography/mass-spectrometry in type 2 diabetes to assess polyol pathway activity,” Diabetes Research and Clinical Practice, vol. 51, no. 2, pp. 115–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kallai-Sanfacon, “Method of lowering lipid levels,” US patent #4,492,706, 1985.
  22. M. Kawamura, G. Eisenhofer, I. J. Kopin et al., “Aldose reductase: an aldehyde scavenging enzyme in the intraneuronal metabolism of norepinephrine in human sympathetic ganglia,” Autonomic Neuroscience: Basic and Clinical, vol. 96, no. 2, pp. 131–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Peterson, “Method of lowering blood lipid levels,” US patent #5,391,551, 1995.
  24. M. A. Abdelmegeed, S. H. Yoo, L. E. Henderson, F. J. Gonzalez, K. J. Woodcroft, and B. J. Song, “PPARα expression protects male mice from high fat-induced nonalcoholic fatty liver,” Journal of Nutrition, vol. 141, no. 4, pp. 603–610, 2011. View at Publisher · View at Google Scholar
  25. F. Djouadi, C. J. Weinheimer, J. E. Saffitz et al., “A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor α-deficient mice,” Journal of Clinical Investigation, vol. 102, no. 6, pp. 1083–1091, 1998. View at Google Scholar · View at Scopus
  26. C. Duval, M. Muller, and S. Kersten, “PPARα and dyslipidemia,” Biochimica et Biophysica Acta, vol. 1771, pp. 961–971, 2007. View at Google Scholar
  27. E. Ip, G. C. Farrell, G. Robertson, P. Hall, R. Kirsch, and I. Leclercq, “Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice,” Hepatology, vol. 38, no. 1, pp. 123–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. R. Pyper, N. Viswakarma, S. Yu, and J. K. Reddy, “PPARalpha: energy combustion, hypolipidemia, inflammation and cancer,” Nuclear Receptor Signaling, vol. 8, p. e002, 2010. View at Google Scholar · View at Scopus
  29. H. T. Wu, C. T. Chen, K. C. Cheng, Y. X. Li, C. H. Yeh, and J. T. Cheng, “Pharmacological activation of peroxisome proliferator-activated receptor delta Improves insulin resistance and hepatic steatosis in high fat diet-induced diabetic mice,” Hormone and Metabolic Research, vol. 43, pp. 631–635, 2011. View at Google Scholar
  30. N. Vu-Dac, P. Gervois, H. Jakel et al., “Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor α activators,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 17982–17985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Auwerx, K. Schoonjans, J. C. Fruchart, and B. Staels, “Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR,” Atherosclerosis, vol. 124, pp. S29–S37, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Jürgens, W. Haass, T. R. Castañeda et al., “Consuming fructose-sweetened beverages increases body adiposity in mice,” Obesity Research, vol. 13, no. 7, pp. 1145–1156, 2005. View at Google Scholar
  33. S. S. Elliott, N. L. Keim, J. S. Stern, K. Teff, and P. J. Havel, “Fructose, weight gain, and the insulin resistance syndrome,” American Journal of Clinical Nutrition, vol. 76, no. 5, pp. 911–922, 2002. View at Google Scholar · View at Scopus
  34. V. T. Samuel, “Fructose induced lipogenesis: from sugar to fat to insulin resistance,” Trends in Endocrinology and Metabolism, vol. 22, no. 2, pp. 60–65, 2011. View at Publisher · View at Google Scholar
  35. M. J. Dekker, Q. Su, C. Baker, A. C. Rutledge, and K. Adeli, “Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome,” American Journal of Physiology, vol. 299, no. 5, pp. E685–E694, 2010. View at Publisher · View at Google Scholar
  36. F. A. Anania, “Non-alcoholic fatty liver disease and fructose: bad for us, better for mice,” Journal of Hepatology, vol. 55, no. 1, pp. 218–220, 2011. View at Publisher · View at Google Scholar
  37. A. Alisi, M. Manco, M. Pezzullo, and V. Nobili, “Fructose at the center of necroinflammation and fibrosis in nonalcoholic steatohepatitis,” Hepatology, vol. 53, no. 1, pp. 372–373, 2011. View at Publisher · View at Google Scholar
  38. J. S. Lim, M. Mietus-Snyder, A. Valente, J. M. Schwarz, and R. H. Lustig, “The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 5, pp. 251–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. H. Tetri, M. Basaranoglu, E. M. Brunt, L. M. Yerian, and B. A. Neuschwander-Tetri, “Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent,” American Journal of Physiology, vol. 295, no. 5, pp. G987–G995, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Nagata, Y. Nishio, O. Sekine et al., “Single nucleotide polymorphism (-468 Gly to Ala) at the promoter region of sterol regulatory element-binding protein-1c associates with genetic defect of fructose-induced hepatic lipogenesis,” Journal of Biological Chemistry, vol. 279, no. 28, pp. 29031–29042, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Nagata, Y. Nishio, O. Sekine et al., “Erratum: Single nucleotide polymorphism (-468 Gly to Ala) at the promoter region of sterol regulatory element-binding protein-1c associates with genetic defect of fructose-induced hepatic lipogenesis (Journal of Biological Chemistry (2004) 279 (29031-29042)),” Journal of Biological Chemistry, vol. 279, no. 35, p. 37210, 2004. View at Google Scholar · View at Scopus
  42. J. Park, S. Lemieux, G. F. Lewis, A. Kuksis, and G. Steiner, “Chronic exogenous insulin and chronic carbohydrate supplementation increase de novo VLDL triglyceride fatty acid production in rats,” Journal of Lipid Research, vol. 38, no. 12, pp. 2529–2536, 1997. View at Google Scholar · View at Scopus
  43. N. Roglans, A. Bellido, C. Rodríguez et al., “Fibrate treatment does not modify the expression of acyl coenzyme A oxidase in human liver,” Clinical Pharmacology and Therapeutics, vol. 72, no. 6, pp. 692–701, 2002. View at Publisher · View at Google Scholar
  44. Z. Ackerman, M. Oron-Herman, M. Grozovski et al., “Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction,” Hypertension, vol. 45, no. 5, pp. 1012–1018, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Kanuri, A. Spruss, S. Wagnerberger, S. C. Bischoff, and I. Bergheim, “Fructose-induced steatosis in mice: role of plasminogen activator inhibitor-1, microsomal triglyceride transfer protein and NKT cells,” Laboratory Investigation, vol. 91, no. 6, pp. 885–895, 2011. View at Publisher · View at Google Scholar
  46. M. Song, D. A. Schuschke, Z. Zhou et al., “High fructose feeding induces copper deficiency in sprague-dawley rats: a novel mechanism for obesity related fatty liver,” Journal of Hepatology. In press. View at Publisher · View at Google Scholar
  47. M. F. Abdelmalek, A. Suzuki, C. Guy et al., “Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease,” Hepatology, vol. 51, no. 6, pp. 1961–1971, 2010. View at Publisher · View at Google Scholar · View at Scopus