Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 858121, 5 pages
http://dx.doi.org/10.1155/2012/858121
Research Article

Single Diabetic QTL Derived from OLETF Rat Is a Sufficient Agent for Severe Diabetic Phenotype in Combination with Leptin-Signaling Deficiency

1Department of Life Science, Division of Natural Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan
2Division for Animal Research Resources, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
3Laboratory of Animal Genetics, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
4Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan

Received 4 September 2012; Accepted 5 November 2012

Academic Editor: Tomohiko Sasase

Copyright © 2012 Hiroyuki Kose et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization (WHO), Strategy on Diet, Physical Activity, and Health, 2000.
  2. P. Zimmet, K. G. M. M. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Orahilly, “Human genetics illuminates the paths to metabolic disease,” Nature, vol. 462, no. 7271, pp. 307–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Altshuler, M. J. Daly, and E. S. Lander, “Genetic mapping in human disease,” Science, vol. 322, no. 5903, pp. 881–888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Saxena, B. F. Voight, V. Lyssenko et al., “Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels,” Science, vol. 316, no. 5829, pp. 1331–1336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Zeggini, M. N. Weedon, C. M. Lindgren et al., “Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes,” Science, vol. 316, no. 5829, pp. 1336–1341, 2007. View at Publisher · View at Google Scholar
  7. L. J. Scott, K. L. Mohlke, L. L. Bonnycastle et al., “A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants,” Science, vol. 316, no. 5829, pp. 1341–1345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. J. Aitman, J. K. Critser, E. Cuppen et al., “Progress and prospects in rat genetics: a community view,” Nature Genetics, vol. 40, no. 5, pp. 516–522, 2008. View at Publisher · View at Google Scholar
  9. D. Chen and M. W. Wang, “Development and application of rodent models for type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 7, no. 4, pp. 307–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Islam and D. T. Loots, “Experimental rodent models of type 2 diabetes: a review,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 31, no. 4, pp. 249–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kawano, T. Hirashima, S. Mori, M. Kurosumi, and Y. Saitoh, “A new rat strain with non-insulin-dependent diabetes mellitus, 'OLETF',” Rat News Letter, vol. 25, pp. 24–26, 1991. View at Google Scholar
  12. T. K. Watanabe, S. Okuno, K. Oga et al., “Genetic dissection of 'OLETF,' a rat model for non-insulin-dependent diabetes mellitus: quantitative trait locus analysis of (OLETF x BN) x OLETF,” Genomics, vol. 58, no. 3, pp. 233–239, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. D. H. Moralejo, S. Wei, K. Wei et al., “Identification of quantitative trait loci for non-insulin-dependent diabetes mellitus that interact with body weight in the Otsuka Long-Evans Tokushima Fatty rat,” Proceedings of the Association of American Physicians, vol. 110, no. 6, pp. 545–558, 1998. View at Google Scholar · View at Scopus
  14. H. Kose, D. H. Moralejo, T. Ogino, A. Mizuno, T. Yamada, and K. Matsumoto, “Examination of OLETF-derived non-insulin-dependent diabetes mellitus QTL by construction of a series of congenic rats,” Mammalian Genome, vol. 13, no. 10, pp. 558–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Fukumura, H. Kose, C. Takeda et al., “Genetic interaction between hyperglycemic QTLs is manifested under a high calorie diet in OLETF-derived congenic rats,” Experimental Animals, vol. 60, no. 2, pp. 125–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Akhi, H. Kose, and K. Matsumoto, “Fine mapping of the hyperglycemic and obesity QTL by congenic strains suggests multiple loci on rat chromosome 14,” Journal of Medical Investigation, vol. 52, no. 1-2, pp. 109–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kose, Y. Bando, K. Izumi, T. Yamada, and K. Matsumoto, “Epistasis between hyperglycemic QTLs revealed in a double congenic of the OLETF rat,” Mammalian Genome, vol. 18, no. 8, pp. 609–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Phillips, Q. Liu, H. A. Hammond et al., “Leptin receptor missense mutation in the fatty Zucker rat,” Nature Genetics, vol. 13, no. 1, pp. 18–19, 1996. View at Google Scholar · View at Scopus
  19. P. Markel, P. Shu, C. Ebeling et al., “Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains,” Nature Genetics, vol. 17, no. 3, pp. 280–284, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Iida, T. Murakami, K. Ishida, A. Mizuno, M. Kuwajima, and K. Shima, “Substitution at codon 269 (glutamine → proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat,” Biochemical and Biophysical Research Communications, vol. 224, no. 2, pp. 597–604, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ogino, S. Wei, K. Wei et al., “Genetic evidence for obesity loci involved in the regulation of body fat distribution in obese type 2 diabetes rat, OLETF,” Genomics, vol. 70, no. 1, pp. 19–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. L. M. Zucker and T. F. Zucker, “Fatty, a new mutation in the rat,” Journal of Heredity, vol. 52, no. 6, pp. 275–278, 1961. View at Google Scholar · View at Scopus
  23. S. M. Clee, S. T. Nadler, and A. D. Attie, “Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes,” American Journal of Therapeutics, vol. 12, no. 6, pp. 491–498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Stoehr, S. T. Nadler, K. L. Schueler et al., “Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci,” Diabetes, vol. 49, no. 11, pp. 1946–1954, 2000. View at Google Scholar · View at Scopus
  25. R. G. Peterson, W. N. Shaw, M.-A. Neel, L. A. Little, and J. Eichberg, “Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus,” ILAR News, vol. 32, no. 3, pp. 16–19, 1990. View at Google Scholar
  26. W. K. Chung, M. Zheng, M. Chua et al., “Genetic modifiers of Leprfa associated with variability in insulin production and susceptibility to NIDDM,” Genomics, vol. 41, no. 3, pp. 332–344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Scherneck, M. Nestler, H. Vogel et al., “Positional cloning of zinc finger domain transcription factor Zfp69, a candidate gene for obesity-associated diabetes contributed by mouse locus Nidd/SJL,” PLoS Genetics, vol. 5, no. 7, Article ID e1000541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Bhatnagar, A. T. Oler, M. E. Rabaglia et al., “Positional cloning of a type 2 diabetes quantitative trait locus, tomosyn-2, a negative regulator of insulin secretion,” PLoS Genetics, vol. 7, no. 10, Article ID e1002323, 2011. View at Google Scholar
  29. M. Dokmanovic-Chouinard, W. K. Chung, J. C. Chevre et al., “Positional cloning of "Lisch-like", a candidate modifier of susceptibility to type 2 diabetes in mice,” PLoS Genetics, vol. 4, no. 7, Article ID e1000137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Clee, B. S. Yandell, K. M. Schueler et al., “Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus,” Nature Genetics, vol. 38, no. 6, pp. 688–693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Kawano, T. Hirashima, S. Mori, Y. Saitoh, M. Kurosumi, and T. Natori, “Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka Long-Evans Tokushima Fatty (OLETF) strain,” Diabetes, vol. 41, no. 11, pp. 1422–1428, 1992. View at Google Scholar · View at Scopus
  32. A. Y. Deng, “Genetic basis of polygenic hypertension,” Human Molecular Genetics, vol. 16, pp. R195–R202, 2007. View at Publisher · View at Google Scholar · View at Scopus