Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012 (2012), Article ID 902917, 14 pages
http://dx.doi.org/10.1155/2012/902917
Review Article

Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases

1Department of Microbiology & Immunology, National Institute of Nutrition, Hyderabad 50007, India
2Shaheed Udham Singh College of Research & Technology, Punjab, Mohali, Radaur, Haryana, India
3Research and Development Unit, National Heart Centre, 1687521, Singapore
4Department of Zoology, M.L.K. Post-Graduate College, Balrampur 271201, India
5Department of Biotechnology, ITS Paramedical College, Ghaziabad 201206, India
6Indian Veterinary Research Institute, Regional Station, Palampur 176061, India
7Hepato-Gastroenterology Unit, S. Giuseppe Hospital, Vittore, 20123 Milano, Italy
8Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
9Endocrinology, Diabetes, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA

Received 18 October 2011; Accepted 10 January 2012

Academic Editor: Raffaele Marfella

Copyright © 2012 Manoj Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Aloǧlu and Z. Öner, “Assimilation of cholesterol in broth, cream, and butter by probiotic bacteria,” European Journal of Lipid Science and Technology, vol. 108, no. 9, pp. 709–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. WHO, “Cardiovascular Disease,” Fact sheet no. 317, WHO, Geneva, Switzerland, 2009, http://www.who.int/mediacentre/factsheets/fs317/en/print.html.
  3. P. S. Yusuf, S. Hawken, S. Ôunpuu et al., “Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study,” Lancet, vol. 364, no. 9438, pp. 937–952, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. WHO, “Diet, Nutrition and Prevention of Chronic Diseases,” Report of a Joint WHO/FAO Expert Consultation, Geneva, Switzerland, 2003. View at Google Scholar
  5. S. Dunn-Emke, G. Weidner, and D. Ornish, “Benefits of a low-fat plant-based diet,” Obesity Research, vol. 9, no. 11, p. 731, 2001. View at Google Scholar · View at Scopus
  6. E. G. Bliznakov, “Lipid-lowering drugs (statins), cholesterol, and coenzyme Q10. The Baycol case—a modern Pandora's box,” Biomedicine and Pharmacotherapy, vol. 56, no. 1, pp. 56–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. I. De Smet, P. De Boever, and W. Verstraete, “Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity,” British Journal of Nutrition, vol. 79, no. 2, pp. 185–194, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. I. De Smet, L. Van Hoorde, M. Vande Woestyne, H. Christiaens, and W. Verstraete, “Significance of bile salt hydrolytic activities of lactobacilli,” Journal of Applied Bacteriology, vol. 79, no. 3, pp. 292–301, 1995. View at Google Scholar · View at Scopus
  9. T. A. B. Sanders, “Food production and food safety,” British Medical Journal, vol. 318, no. 7199, pp. 1689–1693, 1999. View at Google Scholar · View at Scopus
  10. R. Nagpal, H. Yadav, A. K. Puniya, K. Singh, S. Jain, and F. Marotta, “Potential of probiotics and prebiotics for synbiotic functional dairy foods,” International Journal of Probiotics and Prebiotics, vol. 2, pp. 75–84, 2007. View at Google Scholar
  11. M. Kumar, P. V. Behare, D. Mohania, S. Arora, A. Kaur, and R. Nagpal, “Lactobacillus acidophilus 74-2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults,” European Journal of Clinical Nutrition, vol. 62, no. 5, pp. 584–593, 2008. View at Publisher · View at Google Scholar
  12. S. Bengmark, S. Ahrne, G. Molin, and B. Jeppsson, “Intestinal colonizing lactobacilli,” Journal of Nutrition, vol. 14, no. 8, pp. 585–594, 1998. View at Google Scholar
  13. D. R. Mack, S. Michail, S. Wei, L. McDougall, and M. A. Hollingsworth, “Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression,” American Journal of Physiology, vol. 276, no. 4, pp. G941–G950, 1999. View at Google Scholar · View at Scopus
  14. H. Yadav, S. Jain, and P. R. Sinha, “Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats,” Nutrition, vol. 23, no. 1, pp. 62–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yadav, S. Jain, and P. R. Sinha, “Formation of oligosaccharides in skim milk fermented with mixed dahi cultures, Lactococcus lactis ssp diacetylactis and probiotic strains of lactobacilli,” Journal of Dairy Research, vol. 74, no. 2, pp. 154–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kumar, D. Mohania, D. Poddar et al., “A probiotic fermented milk prepared by mixed culture reduces pathogen shedding and alleviates disease signs in rats challenged with pathogens,” International Journal of Probiotics and Prebiotics, vol. 4, no. 3, pp. 211–217, 2009. View at Google Scholar · View at Scopus
  17. M. Kumar, A. Kumar, R. Nagpal et al., “Cancer-preventing attributes of probiotics: An update,” International Journal of Food Sciences and Nutrition, vol. 61, no. 5, pp. 473–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kumar, V. Verma, R. Nagpal et al., “Anticarcinogenic effect of probiotic fermented milk and Chlorophyllin on aflatoxin-B1 induced liver carcinogenesis in rats,” British Journal of Nutrition, vol. 107, pp. 1006–1016, 2012. View at Publisher · View at Google Scholar
  19. M. Kumar, V. Verma, R. Nagpal et al., “Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB1-induced hepatocellular carcinoma,” Gene, vol. 490, no. 1-2, pp. 54–59, 2011. View at Publisher · View at Google Scholar
  20. K. Niedzielin, H. Kordecki, and B. Birkenfeld, “A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome,” European Journal of Gastroenterology and Hepatology, vol. 13, no. 10, pp. 1143–1147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. T. A. B. Sanders, “Food production and food safety,” British Medical Journal, vol. 318, no. 7199, pp. 1689–1693, 1999. View at Google Scholar · View at Scopus
  22. R. Nagpal, P. V. Behare, M. Kumar et al., “Milk, milk products and disease free health: an updated overview,” Critical Reviews in Food Science and Nutrition, vol. 52, no. 4, pp. 1549–7852, 2011. View at Publisher · View at Google Scholar
  23. D. I. A. Pereira and G. R. Gibson, “Effects of consumption of probiotics and prebiotics on serum lipid levels in humans,” Critical Reviews in Biochemistry and Molecular Biology, vol. 37, no. 4, pp. 259–281, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. F. A. M. Klaver and R. Van der Meer, “The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity,” Applied and Environmental Microbiology, vol. 59, no. 4, pp. 1120–1124, 1993. View at Google Scholar · View at Scopus
  25. K. Tahri, J. P. Grill, and F. Schneider, “Bifidobacteria strain behavior toward cholesterol: Coprecipitation with bile salts and assimilation,” Current Microbiology, vol. 33, no. 3, pp. 187–193, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Tahri, J. P. Grill, and F. Schneider, “Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria,” Current Microbiology, vol. 34, no. 2, pp. 79–84, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. H. A. Usman, “Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains,” Journal of Dairy Science, vol. 82, no. 2, pp. 243–248, 1999. View at Google Scholar · View at Scopus
  28. I. De Smet, L. van Hoorde, N. De Saeyer, M. Vande Woestyne, and W. Verstraete, “In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity,” Microbial Ecology in Health and Disease, vol. 7, no. 6, pp. 315–329, 1994. View at Google Scholar · View at Scopus
  29. B. Z. De Rodas, S. E. Gilliland, and C. V. Maxwell, “Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet,” Journal of Dairy Science, vol. 79, no. 12, pp. 2121–2128, 1996. View at Google Scholar · View at Scopus
  30. M. O. Reynier, J. C. Montet, and A. Gerolami, “Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol,” Journal of Lipid Research, vol. 22, no. 3, pp. 467–473, 1981. View at Google Scholar
  31. S. E. Gilliland, C. R. Nelson, and C. Maxwell, “Assimilation of cholesterol by Lactobacillus acidophilus,” Applied and Environmental Microbiology, vol. 49, no. 2, pp. 377–381, 1985. View at Google Scholar · View at Scopus
  32. M. Du Toit, C. M. A. P. Franz, L. M. T. Dicks et al., “Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content,” International Journal of Food Microbiology, vol. 40, no. 1-2, pp. 93–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. D. K. Walker and S. E. Gilliland, “Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus,” Journal of Dairy Science, vol. 76, no. 4, pp. 956–961, 1993. View at Google Scholar · View at Scopus
  34. M. Rojas, F. Ascencio, and P. L. Conway, “Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin,” Applied and Environmental Microbiology, vol. 68, no. 5, pp. 2330–2336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Reid, A. W. Bruce, N. Fraser, C. Heinemann, J. Owen, and B. Henning, “Oral probiotics can resolve urogenital infections,” FEMS Immunology and Medical Microbiology, vol. 30, no. 1, pp. 49–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Gusils, S. N. González, and G. Oliver, “Some probiotic properties of chicken lactobacilli,” Canadian Journal of Microbiology, vol. 45, no. 12, pp. 981–987, 1999. View at Google Scholar · View at Scopus
  37. C. Heinemann, J. E. T. van Hylckama Vlieg, D. B. Janssen, H. J. Busscher, H. C. van der Mei, and G. Reid, “Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131,” FEMS Microbiology Letters, vol. 190, no. 1, pp. 177–180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Tanaka, K. Doesburg, T. Iwasaki, and I. Mierau, “Screening of lactic acid bacteria for bile salt hydrolase activity,” Journal of Dairy Science, vol. 82, no. 12, pp. 2530–2535, 1999. View at Google Scholar · View at Scopus
  39. H. Tanaka, H. Hashiba, J. Kok, and I. Mierau, “Bile salt hydrolase of Bifidobacterium longum—biochemical and genetic characterization,” Applied and Environmental Microbiology, vol. 66, no. 6, pp. 2502–2512, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. J. P. Grill, C. Cayuela, J. M. Antoine, and F. Schneider, “Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance,” Journal of Applied Microbiology, vol. 89, no. 4, pp. 553–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. B. J. B. Wood and W. H. Holzapfel, The Genera of Lactic Acid Bacteria, Blackie Academy, London, UK, 1995.
  42. G. Corzo and S. E. Gilliland, “Bile salt hydrolase activity of three strains of Lactobacillus acidophilus,” Journal of Dairy Science, vol. 82, no. 3, pp. 472–480, 1999. View at Google Scholar · View at Scopus
  43. G. Corzo and S. E. Gilliland, “Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts,” Journal of Dairy Science, vol. 82, no. 3, pp. 466–471, 1999. View at Google Scholar · View at Scopus
  44. S. A. Moser and D. C. Savage, “Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli,” Applied and Environmental Microbiology, vol. 67, no. 8, pp. 3476–3480, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. G. V. Mann and A. Spoerry, “Studies of a surfactant and cholesteremia in the Maasai,” American Journal of Clinical Nutrition, vol. 27, no. 5, pp. 464–469, 1974. View at Google Scholar · View at Scopus
  46. G. V. Mann, “A factor in yoghurt which lowers cholesterolemia in man,” Arthrosclerosis, vol. 26, pp. 335–340, 1977. View at Google Scholar
  47. M. Y. Lin and T. W. Chen, “Reduction of Cholesterol by Lactobacillus acidophilus in Culture Broth,” Journal of Food and Drug Analysis, vol. 8, no. 2, pp. 97–102, 2000. View at Google Scholar · View at Scopus
  48. K. K. Grunewald, “Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus,” Journal of Food Science, vol. 47, pp. 2078–2079, 1982. View at Google Scholar
  49. M. P. Taranto, M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. F. Valdez, “Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice,” Journal of Dairy Science, vol. 81, no. 9, pp. 2336–2340, 1998. View at Google Scholar · View at Scopus
  50. J. Z. Xiao, S. Kondo, N. Takahashi et al., “Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers,” Journal of Dairy Science, vol. 86, no. 7, pp. 2452–2461, 2003. View at Google Scholar · View at Scopus
  51. I. A. Abd El-Gawad, E. M. El-Sayed, S. A. Hafez, H. M. El-Zeini, and F. A. Saleh, “The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet,” International Dairy Journal, vol. 15, no. 1, pp. 37–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Kumar, S. Grover, and V. K. Batish, “Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats,” British Journal of Nutrition, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Y. Lin, J. W. Ayres, W. Winkler, and W. E. Sandine, “Lactobacillus effects on cholesterol: in vitro and in vivo results,” Journal of Dairy Science, vol. 72, no. 11, pp. 2885–2899, 1989. View at Google Scholar · View at Scopus
  54. J. C. Mohan, R. Arora, and M. Khalilullah, “Preliminary observations on effect of Lactobacillus sporogenes on serum lipid levels in hypercholesterolemic patients,” Indian Journal of Medical Research Section B, vol. 92, pp. 431–432, 1990. View at Google Scholar · View at Scopus
  55. F. D. Gilliland, R. Mahler, W. C. Hunt, and S. M. Davis, “Preventive health care among rural American Indians in New Mexico,” Preventive Medicine, vol. 28, no. 2, pp. 194–202, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Klein, U. Friedrich, H. Vogelsang, and G. Jahreis, “Lactobacillus acidophilus 74-2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults,” European Journal of Clinical Nutrition, vol. 62, no. 5, pp. 584–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. L. Jones, C. J. Martoni, M. Parent, and S. Prakash, “Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults,” British Journal of Nutrition, vol. 9, pp. 1–9, 2011. View at Google Scholar
  58. M. C. Carey and W. C. Duane, “Enterohepatic circulation,” in The Liver: Biology and Pathobiology, I. M. Arias, N. Boyer, N. Fausto, W. B. Jackoby, D. A. Schachter, and D. A. Shafritz, Eds., pp. 719–738, Raven Press, Ltd., New York, NY, USA, 1994. View at Google Scholar
  59. A. F. Hofmann, “Bile acids,” in The Liver: Biology and Pathobiology, I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jackoby, D. A. Schachter, and D. A. Shafritz, Eds., pp. 677–718, Raven Press, New York, NY, USA, 1994. View at Google Scholar
  60. M. Begley, C. G. M. Gahan, and C. Hill, “The interaction between bacteria and bile,” FEMS Microbiology Reviews, vol. 29, no. 4, pp. 625–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Begley, R. D. Sleator, C. G. M. Gahan, and C. Hill, “Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes,” Infection and Immunity, vol. 73, no. 2, pp. 894–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. R. Vlahcevic, D. M. Heuman, and P. B. Hylemon, “Physiology and pathophysiology of enterohepatic circulation of bile acids,” in Hepatology: A Textbook of Liver Disease, D. Zakim and T. Boyer, Eds., pp. 376–417, Saunders, Philadelphia, Pa, USA, 3rd edition, 1996. View at Google Scholar
  63. O. Bortolini, A. Medici, and S. Poli, “Biotransformations on steroid nucleus of bile acids,” Steroids, vol. 62, no. 8-9, pp. 564–577, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. A. K. Batta, G. Salen, R. Arora, S. Shefer, M. Batta, and A. Person, “Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids,” Journal of Biological Chemistry, vol. 265, no. 19, pp. 10925–10928, 1990. View at Google Scholar · View at Scopus
  65. C. A. Elkins, S. A. Moser, and D. C. Savage, “Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species,” Microbiology, vol. 147, no. 12, pp. 3403–3412, 2001. View at Google Scholar · View at Scopus
  66. C. M. A. P. Franz, I. Specht, P. Haberer, and W. H. Holzapfel, “Bile salt hydrolase activity of enterococci isolated from food: screening and quantitative determination,” Journal of Food Protection, vol. 64, no. 5, pp. 725–729, 2001. View at Google Scholar · View at Scopus
  67. D. R. Edgell, M. Belfort, and D. A. Shub, “Barriers to intron promiscuity in bacteria,” Journal of Bacteriology, vol. 182, no. 19, pp. 5281–5289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. O. McAuliffe, R. J. Cano, and T. R. Klaenhammer, “Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM,” Applied and Environmental Microbiology, vol. 71, no. 8, pp. 4925–4929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. S. M. Huijghebaert, J. A. Mertens, and H. J. Eyssen, “Isolation of a bile salt sulfatase producing Clostridium strain from rat intestinal microflora,” Applied and Environmental Microbiology, vol. 43, no. 1, pp. 185–192, 1982. View at Google Scholar · View at Scopus
  70. J. Van Eldere, P. Celis, G. De Pauw, E. Lesaffre, and H. Eyssen, “Tauroconjugation of cholic acid stimulates 7α-dehydroxylation by fecal bacteria,” Applied and Environmental Microbiology, vol. 62, no. 2, pp. 656–661, 1996. View at Google Scholar · View at Scopus
  71. G. W. Tannock, M. P. Dashkevicz, and S. D. Feighner, “Lactobacilli and bile salt hydrolase in the murine intestinal tract,” Applied and Environmental Microbiology, vol. 55, no. 7, pp. 1848–1851, 1989. View at Google Scholar · View at Scopus
  72. S. E. Gilliland and M. L. Speck, “Deconjugation of bile acids by intestinal lactobacilli,” Applied and Environmental Microbiology, vol. 33, no. 1, pp. 15–18, 1977. View at Google Scholar · View at Scopus
  73. P. C. Dambekodi and S. E. Gilliland, “Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum,” Journal of Dairy Science, vol. 81, no. 7, pp. 1818–1824, 1998. View at Google Scholar · View at Scopus
  74. M. P. Taranto, F. Sesma, A. Pesce De Ruiz Holgado, and G. F. De Valdez, “Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri,” Biotechnology Letters, vol. 19, no. 9, pp. 845–847, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. M. P. Taranto, M. L. Fernandez Murga, G. Lorca, and G. F. De Valdez, “Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri,” Journal of Applied Microbiology, vol. 95, no. 1, pp. 86–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. M. Boggs, “Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function,” Biochimica et Biophysica Acta, vol. 906, no. 3, pp. 353–404, 1987. View at Google Scholar · View at Scopus
  77. I. De Smet, L. Van Hoorde, M. Vande Woestyne, H. Christiaens, and W. Verstraete, “Significance of bile salt hydrolytic activities of lactobacilli,” Journal of Applied Bacteriology, vol. 79, no. 3, pp. 292–301, 1995. View at Google Scholar · View at Scopus
  78. J. P. Coleman and L. L. Hudson, “Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens,” Applied and Environmental Microbiology, vol. 61, no. 7, pp. 2514–2520, 1995. View at Google Scholar · View at Scopus
  79. G.-B. Kim, C. M. Miyamoto, E. A. Meighen, and B. H. Lee, “Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains,” Applied and Environmental Microbiology, vol. 70, no. 9, pp. 5603–5612, 2004. View at Publisher · View at Google Scholar
  80. M. T. Liong and N. P. Shah, “Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains,” International Dairy Journal, vol. 15, no. 4, pp. 391–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. J. M. Bateup, M. A. McConnell, H. F. Jenkinson, and G. W. Tannock, “Comparison of Lactobacillus strains with respect to bile salt hydrolase activity, colonization of the gastrointestinal tract, and growth rate of the murine host,” Applied and Environmental Microbiology, vol. 61, no. 3, pp. 1147–1149, 1995. View at Google Scholar · View at Scopus
  82. O. Dussurget, D. Cabanes, P. Dehoux et al., “Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis,” Molecular Microbiology, vol. 45, no. 4, pp. 1095–1106, 2002. View at Publisher · View at Google Scholar
  83. H. Schuster, “Improving lipid management - To titrate, combine or switch,” International Journal of Clinical Practice, vol. 58, no. 7, pp. 689–694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. M. P. Taranto, M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. Font de Valdez, “Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice,” Journal of Dairy Science, vol. 83, no. 3, pp. 401–403, 2000. View at Google Scholar · View at Scopus
  85. S. D. Feighner and M. P. Dashkevicz, “Effect of dietary carbohydrates on bacterial cholyltaurine hydrolase in poultry intestinal homogenates,” Applied and Environmental Microbiology, vol. 54, no. 2, pp. 337–342, 1988. View at Google Scholar · View at Scopus
  86. M. P. St-Onge, E. R. Farnworth, and P. J. H. Jones, “Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism,” American Journal of Clinical Nutrition, vol. 71, no. 3, pp. 674–681, 2000. View at Google Scholar · View at Scopus
  87. J. W. Anderson and S. E. Gilliland, “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999. View at Google Scholar · View at Scopus
  88. L. A. Kaplan and A. J. Pesse, Clinical Chemistry, Theory, Analysis, and Correlation, Mosby Company, St. Louis, Mo, USA, 3rd edition, 1996.
  89. S. Dessi and B. Batetta, “Overview—intracellular cholesterol homeostasis: old and new players,” in Cell Growth and Cholesterol Esters, A. Pani and S. Dessi, Eds., pp. 1–12, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2003. View at Google Scholar
  90. J. B. Croft, J. L. Cresanta, L. S. Webber et al., “Cardiovascular risk in parents of children with extreme lipoprotein cholesterol levels: the Bogalusa Heart Study,” Southern Medical Journal, vol. 81, no. 3, pp. 341–349, 1988. View at Google Scholar · View at Scopus
  91. I. Jialal, “Evolving lipoprotein risk factors: Lipoprotein(a) and oxidized low-density lipoprotein,” Clinical Chemistry, vol. 44, no. 8, pp. 1827–1832, 1998. View at Google Scholar
  92. A. Höckerstedt, M. Jauhiainen, and M. J. Tikkanen, “Lecithin/cholesterol acyltransferase induces estradiol esterification in high-density lipoprotein, increasing its antioxidant potential,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 5088–5093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. S. E. Nissen, T. Tsunoda, E. M. Tuzcu et al., “Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 17, pp. 2292–2300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Walldus, I. Jungner, A. H. Aastveit, I. Holme, C. D. Furberg, and A. D. Sniderman, “The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk,” Clinical Chemistry and Laboratory Medicine, vol. 42, no. 12, pp. 1355–1363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. V. De Preter, T. Coopmans, P. Rutgeerts, and K. Verbeke, “Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects,” Journal of the American College of Nutrition, vol. 25, no. 6, pp. 541–549, 2006. View at Google Scholar · View at Scopus
  96. Y. Xiong, N. Miyamoto, K. Shibata et al., “Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 4, pp. 1045–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. P. De Boever and W. Verstraete, “Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity,” Journal of Applied Microbiology, vol. 87, no. 3, pp. 345–352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. N. I. Doncheva, G. P. Antov, E. B. Softova, and Y. P. Nyagolov, “Experimental and clinical study on the hypolipidemic and antisclerotic effect of Lactobacillus bulgaricus strain GB N 1 (48),” Nutrition Research, vol. 22, no. 4, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. T. Ahn, G. B. Kim, K. S. Lim, Y. J. Baek, and H. U. Kim, “Deconjugation of bile salts by Lactobacillus acidophilus isolates,” International Dairy Journal, vol. 13, no. 4, pp. 303–311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. D. O. Noh and S. E. Gilliland, “Influence of bile on cellular integrity and beta-galactosidase activity of Lactobacillus acidophilus,” Journal of Dairy Science, vol. 76, no. 5, pp. 1253–1259, 1993. View at Google Scholar · View at Scopus
  101. M. Begley, C. Hill, and C. G. M. Gahan, “Bile salt hydrolase activity in probiotics,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 1729–1738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. M. L. Jones, H. Chen, W. Ouyang, T. Metz, and S. Prakash, “Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 1, pp. 61–69, 2004. View at Publisher · View at Google Scholar
  103. H. Kimoto, S. Ohmomo, and T. Okamoto, “Cholesterol removal from media by lactococci,” Journal of Dairy Science, vol. 85, no. 12, pp. 3182–3188, 2002. View at Google Scholar · View at Scopus
  104. H. S. Lye, G. R. Rahmat-Ali, and M. T. Liong, “Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract,” International Dairy Journal, vol. 20, no. 3, pp. 169–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. H. S. Lye, G. Rusul, and M. T. Liong, “Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol,” Journal of Dairy Science, vol. 93, no. 4, pp. 1383–1392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. R. Chiang, W. Ismail, D. Heintz, C. Schaeffer, A. Van Dorsselaer, and G. Fuchs, “Study of anoxic and oxic cholesterol metabolism by Sterolibacterium denitrificans,” Journal of Bacteriology, vol. 190, no. 3, pp. 905–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. M. T. Liong, F. R. Dunshea, and N. P. Shah, “Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets,” British Journal of Nutrition, vol. 98, no. 4, pp. 736–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. B. H. Arjmandi, J. Craig, S. Nathani, and R. D. Reeves, “Soluble dietary fiber and cholesterol influence in vivo hepatic and intestinal cholesterol biosynthesis in rats,” Journal of Nutrition, vol. 122, no. 7, pp. 1559–1565, 1992. View at Google Scholar · View at Scopus
  109. M. Kim and H. K. Shin, “The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats,” Journal of Nutrition, vol. 128, no. 10, pp. 1731–1736, 1998. View at Google Scholar · View at Scopus
  110. C. L. Dikeman, M. R. Murphy, and G. C. Fahey, “Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta,” Journal of Nutrition, vol. 136, no. 4, pp. 913–919, 2006. View at Google Scholar · View at Scopus