Journal of Diabetes Research
Volume 2013 (2013), Article ID 651462, 5 pages
http://dx.doi.org/10.1155/2013/651462
Research Article
Correlation of Abdominal Fat Distribution with Different Types of Diabetes in a Chinese Population
Department of Radiology, Aerospace Central Hospital, 15 Yu'quan Road, Haidian District, Beijing 100049, China
Received 13 May 2013; Revised 10 September 2013; Accepted 30 September 2013
Academic Editor: Joseph Fomusi Ndisang
Copyright © 2013 Anhui Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- P. Brambilla, G. Bedogni, M. Heo, and A. Pietrobelli, “Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents,” International Journal of Obesity, vol. 37, no. 7, pp. 943–946, 2013. View at Publisher · View at Google Scholar
- S. Wang, L. M. Sparks, H. Xie, F. L. Greenway, L. de Jonge, and S. R. Smith, “Subtyping obesity with microarrays: implications for the diagnosis and treatment of obesity,” International Journal of Obesity, vol. 33, no. 4, pp. 481–489, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. Chen and Z. Tian, “A study on abdomical fat distribution and metabolic syndrome components,” Journal of Medical Colleges of PLA, vol. 30, no. 8, pp. 683–686, 2005. View at Google Scholar
- M. J. Siegel, C. F. Hildebolt, K. T. Bae, C. Hong, and N. H. White, “Total and intraabdominal fat distribution in preadolescents and adolescents: measurement with MR imaging,” Radiology, vol. 242, no. 3, pp. 846–856, 2007. View at Publisher · View at Google Scholar · View at Scopus
- T. Yoshizumi, T. Nakamura, M. Yamane et al., “Abdominal fat: standardized technique for measurement at CT,” Radiology, vol. 211, no. 1, pp. 283–286, 1999. View at Google Scholar · View at Scopus
- D. Canoy, S. M. Boekholdt, N. Wareham et al., “Body fat distribution and risk of coronary heart disease in men and women in the european prospective investigation into cancer and nutrition in norfolk cohort: a population-based prospective study,” Circulation, vol. 116, no. 25, pp. 2933–2943, 2007. View at Publisher · View at Google Scholar · View at Scopus
- M. C. Dubé, D. R. Joanisse, D. Prud'homme et al., “Muscle adiposity and body fat distribution in type 1 and type 2 diabetes: varying relationships according to diabetes type,” International Journal of Obesity, vol. 30, no. 12, pp. 1721–1728, 2006. View at Publisher · View at Google Scholar · View at Scopus
- M. Rosenbaum, I. Fennoy, S. Accacha et al., “Racial/Ethnic differences in clinical and biochemical type 2 diabetes mellitus risk factors in children,” Obesity, vol. 21, no. 10, pp. 2081–2090, 2013. View at Publisher · View at Google Scholar
- J. A. Nazare, J. D. Smith, A. L. Borel et al., “Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship with Cardiometabolic Risk/Intra-Abdominal Adiposity,” The American Journal of Clinical Nutrition, vol. 96, no. 4, pp. 714–726, 2012. View at Google Scholar
- L. E. Wagenknecht, C. D. Langefeld, A. L. Scherzinger et al., “Insulin sensitivity, insulin secretion, and abdominal fat: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study,” Diabetes, vol. 52, no. 10, pp. 2490–2496, 2003. View at Publisher · View at Google Scholar · View at Scopus
- T. Hayashi, E. J. Boyko, D. L. Leonetti et al., “Visceral adiposity and the risk of impaired glucose tolerance: a prospective study among Japanese Americans,” Diabetes Care, vol. 26, no. 3, pp. 650–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. M. Kanaya, T. Harris, B. H. Goodpaster, F. Tylavsky, and S. R. Cummings, “Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults,” Diabetes Care, vol. 27, no. 6, pp. 1375–1380, 2004. View at Publisher · View at Google Scholar · View at Scopus
- E. J. Boyko, W. Y. Fujimoto, D. L. Leonetti, and L. Newell-Morris, “Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans,” Diabetes Care, vol. 23, no. 4, pp. 465–471, 2000. View at Google Scholar · View at Scopus
- M. K. Tulloch-Reid, R. L. Hanson, N. G. Sebring et al., “Both subcutaneous and visceral adipose tissue correlate highly with insulin resistance in African Americans,” Obesity Research, vol. 12, no. 8, pp. 1352–1359, 2004. View at Google Scholar · View at Scopus
- T. Hayashi, E. J. Boyko, D. L. Leonetti et al., “Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans,” Annals of Internal Medicine, vol. 140, no. 12, pp. 992–1000, 2004. View at Google Scholar · View at Scopus
- A. Pascot, S. Lemieux, I. Lemieux et al., “Age-related increase in visceral adipose tissue and body fat and the metabolic risk profile of premenopausal women,” Diabetes Care, vol. 22, no. 9, pp. 1471–1478, 1999. View at Publisher · View at Google Scholar · View at Scopus
- B. H. Goodpaster, S. Krishnaswami, H. Resnick et al., “Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women,” Diabetes Care, vol. 26, no. 2, pp. 372–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
- P. Li, G. Song, and R. Liu, “The correlation study of insulin sensitivity in the primary relatives (with normal glucose tolerance) of the subjects with type 2 diabetes and abdominal fat distribution,” Chinese Geriatric Medical Journal, vol. 29, no. 4, pp. 445–448, 2009. View at Google Scholar
- X. Yang, Y. Gao, and Y. Tian, “The significance of Lipids and liproproteins in cardiovascular disease, diabetes mellitus and tumors,” Journal of Medical Colleges of PLA, vol. 32, no. 2, pp. 141–142, 2011. View at Google Scholar
- I. J. Neeland, A. T. Turer, C. R. Ayers et al., “Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults,” JAMA, vol. 308, no. 11, pp. 1150–1159, 2012. View at Google Scholar
- M. Berings, C. Wehlou, A. Verrijken et al., “Glucose intolerance and the amount of visceral adipose tissue contribute to an increase in circulating triglyceride concentrations in Caucasian obese females,” PLoS ONE, vol. 7, no. 9, Article ID e45145, 2012. View at Publisher · View at Google Scholar
- N. Ohashi, H. Yamamoto, J. Horiguchi et al., “Visceral fat accumulation as a predictor of coronary artery calcium as assessed by multislice computed tomography in Japanese patients,” Atherosclerosis, vol. 202, no. 1, pp. 192–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
- K. Direk, M. Cecelja, W. Astle et al., “The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women,” BMC Cardiovascular Disorders, vol. 13, p. 25, 2013. View at Publisher · View at Google Scholar