Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013, Article ID 905058, 8 pages
http://dx.doi.org/10.1155/2013/905058
Clinical Study

Retinal Layers Changes in Human Preclinical and Early Clinical Diabetic Retinopathy Support Early Retinal Neuronal and Müller Cells Alterations

1Department of Ophthalmology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
2Fondazione G. B. Bietti, Via Livenza 3, 00198 Roma, Italy

Received 8 March 2013; Revised 17 May 2013; Accepted 20 May 2013

Academic Editor: Ahmed M. Abu El-Asrar

Copyright © 2013 Stela Vujosevic and Edoardo Midena. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Girach, D. Manner, and M. Porta, “Diabetic microvascular complications: can patients at risk be identified? A review,” International Journal of Clinical Practice, vol. 60, no. 11, pp. 1471–1483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Villarroel, A. Ciudin, C. Hernandez, and R. Simo, “Neurodegeneration: an early event of diabetic retinopathy,” World Journal of Diabetes, vol. 1, pp. 57–64, 2010. View at Google Scholar
  3. D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” The New England Journal of Medicine, vol. 366, no. 13, pp. 1227–1239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. Barber, T. W. Gardner, and S. F. Abcouwer, “The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 52, no. 2, pp. 1156–1163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Midena, T. Segato, M. Giuliano, and M. Zucchetto, “Macular recovery function (nyctometry) in diabetics without and with early retinopathy,” British Journal of Ophthalmology, vol. 74, no. 2, pp. 106–108, 1990. View at Google Scholar · View at Scopus
  6. E. Midena and S. Vujosevic, “Visual psychophysics in diabetic retinopathy,” in Visual Disfunction in Diabetes, J. T. Tink, C. J. Barnstable, and T. W. Gardner, Eds., pp. 69–105, Springer, New York, NY, USA, 2012. View at Google Scholar
  7. T. S. Kern and A. J. Barber, “Retinal ganglion cells in diabetes,” Journal of Physiology, vol. 586, no. 18, pp. 4401–4408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Gastinger, R. S. J. Singh, and A. J. Barber, “Loss of cholinergic and dopaminergic amacrine cells in streptozotocin- diabetic rat and Ins2Akita-diabetic mouse retinas,” Investigative Ophthalmology and Visual Science, vol. 47, no. 7, pp. 3143–3150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Ly, P. Yee, K. A. Vessey, J. A. Phipps, A. I. Jobling, and E. L. Fletcher, “Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress,and neuronal functional loss,” Investigative Ophthalmology and Visual Science, vol. 52, no. 13, pp. 9316–9326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Biallosterski, M. E. J. Van Velthoven, R. P. J. Michels, R. O. Schlingemann, J. H. DeVries, and F. D. Verbraak, “Decreased optical coherence tomography-measured pericentral retinal thickness in patients with diabetes mellitus type 1 with minimal diabetic retinopathy,” British Journal of Ophthalmology, vol. 91, no. 9, pp. 1135–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Browning, C. M. Fraser, and S. Clark, “The relationship of macular thickness to clinically graded diabetic retinopathy severity in eyes without clinically detected diabetic macular edema,” Ophthalmology, vol. 115, no. 3, pp. 533–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nilsson, G. Von Wendt, P. Wanger, and L. Martin, “Early detection of macular changes in patients with diabetes using Rarebit Fovea Test and optical coherence tomography,” British Journal of Ophthalmology, vol. 91, no. 12, pp. 1596–1598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Oshitari, K. Hanawa, and E. Adachi-Usami, “Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes,” Eye, vol. 23, no. 4, pp. 884–889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. W. Van Dijk, F. D. Verbraak, P. H. B. Kok et al., “Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes,” Investigative Ophthalmology and Visual Science, vol. 51, no. 7, pp. 3660–3665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. W. Van Dijk, P. H. B. Kok, M. Garvin et al., “Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3404–3409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. F. L. Ferris III, A. Kassoff, G. H. Bresnick, and L. Bailey, “New visual acuity charts for clinical research,” American Journal of Ophthalmology, vol. 94, no. 1, pp. 91–96, 1982. View at Google Scholar · View at Scopus
  17. A. Bringmann, I. Iandiev, T. Pannicke et al., “Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects,” Progress in Retinal and Eye Research, vol. 28, no. 6, pp. 423–451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Bringmann and P. Wiedemann, “Müller glial cells in retinal disease,” Ophthalmologica, vol. 227, no. 1, pp. 1–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Joussen, V. Poulaki, M. L. Le et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” The FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. S. Ibrahim, A. B. El-Remessy, S. Matragoon et al., “Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes,” Diabetes, vol. 60, no. 4, pp. 1122–1133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. C. DeBuc and G. M. Somfai, “Early detection of retinal thickness changes in diabetes using optical coherence tomography,” Medical Science Monitor, vol. 16, no. 3, pp. MT15–MT21, 2010. View at Google Scholar · View at Scopus
  22. D. Cabrera Fernández, G. M. Somfai, E. Tátrai et al., “Potentiality of intraretinal layer segmentation to locally detect early retinal changes in patients with diabetes mellitus using optical coherence tomography,” Investigative Ophthalmology & Visual Science, vol. 49, 2008. View at Google Scholar
  23. J. M. Lopes de Faria, H. Russ, and V. P. Costa, “Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy,” British Journal of Ophthalmology, vol. 86, no. 7, pp. 725–728, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Takahashi, T. Goto, T. Shoji, M. Tanito, M. Park, and E. Chihara, “Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry,” American Journal of Ophthalmology, vol. 142, no. 1, pp. 88–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Sugimoto, M. Sasoh, M. Ido, Y. Wakitani, C. Takahashi, and Y. Uji, “Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy,” Ophthalmologica, vol. 219, no. 6, pp. 379–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. P.-H. Peng, H.-S. Lin, and S. Lin, “Nerve fibre layer thinning in patients with preclinical retinopathy,” Canadian Journal of Ophthalmology, vol. 44, no. 4, pp. 417–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. H. Lonneville, S. C. Ozdek, M. Onol, I. Yetkin, G. Gürelik, and B. Hasanreisoğlu, “The effect of blood glucose regulation on retinal nerve fiber layer thickness in diabetic patients,” Ophthalmologica, vol. 217, pp. 347–350, 2003. View at Google Scholar
  28. E. Rungger-Brändle, A. A. Dosso, and P. M. Leuenberger, “Glial reactivity, an early feature of diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 41, pp. 1971–1980, 2000. View at Google Scholar
  29. Q. Li and D. G. Puro, “Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells,” Investigative Ophthalmology & Visual Science, vol. 43, pp. 3109–3116, 2002. View at Google Scholar
  30. E. Lieth, A. J. Barber, B. Xu et al., “Glial reactivity and impaired glutamate metabolism in short- term experimental diabetic retinopathy,” Diabetes, vol. 47, no. 7, pp. 815–820, 1998. View at Google Scholar · View at Scopus
  31. M. Mizutani, C. Gerhardinger, and M. Lorenzi, “Muller cell changes in human diabetic retinopathy,” Diabetes, vol. 47, no. 3, pp. 445–449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. X.-X. Zeng, Y.-K. Ng, and E.-A. Ling, “Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats,” Visual Neuroscience, vol. 17, no. 3, pp. 463–471, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. D. G. Puro, “Diabetes-induced dysfunction of retinal Müller cells,” Transactions of the American Ophthalmological Society, vol. 100, pp. 339–352, 2002. View at Google Scholar
  34. T. M. Curtis, R. Hamilton, P.-H. Yong et al., “Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products,” Diabetologia, vol. 54, no. 3, pp. 690–698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. H. Yong, H. Zong, R. J. Medina et al., “Evidence supporting a role for Nε-(3-formyl-3,4- dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy,” Molecular Vision, vol. 16, pp. 2524–2538, 2010. View at Google Scholar · View at Scopus
  36. A. Reichenbach, A. Wurm, T. Pannicke, I. Iandiev, P. Wiedemann, and A. Bringmann, “Müller cells as players in retinal degeneration and edema,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 5, pp. 627–636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. W. Van Dijk, F. D. Verbraak, P. H. B. Kok et al., “Early neurodegeneration in the retina of type 2 diabetic patients,” Investigative Ophthalmology & Visual Science, vol. 53, pp. 2715–2719, 2012. View at Google Scholar
  38. T. W. Gardner, D. A. Antonetti, A. J. Barber, K. F. LaNoue, and S. W. Levison, “Diabetic retinopathy: more than meets the eye,” Survey of Ophthalmology, vol. 47, no. 2, pp. S253–S262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Carrasco, C. Hernández, A. Miralles, P. Huguet, J. Farrés, and R. Simó, “Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration,” Diabetes Care, vol. 30, no. 11, pp. 2902–2908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Carrasco, C. Hernández, I. de Torres, J. Farrés, and R. Simó, “Lowered cortistatin expression is an early event in the human diabetic retina and is associated with apoptosis and glial activation,” Molecular Vision, vol. 14, pp. 1496–1502, 2008. View at Google Scholar · View at Scopus
  41. B. Fortune, H. Yang, N. G. Strouthidis et al., “The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance,” Investigative Ophthalmology and Visual Science, vol. 50, no. 10, pp. 4719–4726, 2009. View at Publisher · View at Google Scholar · View at Scopus