Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2015 (2015), Article ID 154762, 9 pages
http://dx.doi.org/10.1155/2015/154762
Research Article

Inhibition of Ceramide De Novo Synthesis Ameliorates Diet Induced Skeletal Muscles Insulin Resistance

Department of Physiology, Medical University of Bialystok, 2C Mickiewicza Street, 15-222 Białystok, Poland

Received 1 October 2014; Revised 18 March 2015; Accepted 25 March 2015

Academic Editor: Bagher Larijani

Copyright © 2015 Krzysztof Kurek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Kiens, “Skeletal muscle lipid metabolism in exercise and insulin resistance,” Physiological Reviews, vol. 86, no. 1, pp. 205–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Zhang, W. Keung, V. Samokhvalov, W. Wang, and G. D. Lopaschuk, “Role of fatty acid uptake and fatty acid β-oxidation in mediating insulin resistance in heart and skeletal muscle,” Biochimica et Biophysica Acta, vol. 1801, no. 1, pp. 1–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Denis McGarry, “Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes,” Diabetes, vol. 51, no. 1, pp. 7–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. F. Petersen, S. Dufour, D. B. Savage et al., “The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 31, pp. 12587–12594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bonen, M. L. Parolin, G. R. Steinberg et al., “Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36,” The FASEB Journal, vol. 18, no. 10, pp. 1144–1146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. A. Hannun and L. M. Obeid, “The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 25847–25850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. A. Hannun and L. M. Obeid, “Principles of bioactive lipid signalling: lessons from sphingolipids,” Nature Reviews Molecular Cell Biology, vol. 9, no. 2, pp. 139–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. W. L. Holland and S. A. Summers, “Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism,” Endocrine Reviews, vol. 29, no. 4, pp. 381–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Summers, “Ceramides in insulin resistance and lipotoxicity,” Progress in Lipid Research, vol. 45, no. 1, pp. 42–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Resjö, O. Göransson, L. Härndahl, S. Zolnierowicz, V. Manganiello, and E. Degerman, “Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes,” Cellular Signalling, vol. 14, no. 3, pp. 231–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Hajduch, A. Balendran, I. H. Batty et al., “Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells,” Diabetologia, vol. 44, no. 2, pp. 173–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Straczkowski, I. Kowalska, M. Baranowski et al., “Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes,” Diabetologia, vol. 50, no. 11, pp. 2366–2373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Hanada, “Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism,” Biochimica et Biophysica Acta, vol. 1632, no. 1–3, pp. 16–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Fujita, K. Inoue, S. Yamamoto et al., “Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite,” Journal of Antibiotics, vol. 47, no. 2, pp. 208–215, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Hojjati, Z. Li, H. Zhou et al., “Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice,” The Journal of Biological Chemistry, vol. 280, no. 11, pp. 10284–10289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. T. S. Park, W. Rosebury, E. K. Kindt, M. C. Kowala, and R. L. Panek, “Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice,” Pharmacological Research, vol. 58, no. 1, pp. 45–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. L. Holland, J. T. Brozinick, L.-P. Wang et al., “Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance,” Cell Metabolism, vol. 5, no. 3, pp. 167–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Ussher, T. R. Koves, V. J. J. Cadete et al., “Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption,” Diabetes, vol. 59, no. 10, pp. 2453–2464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Kurek, D. M. Piotrowska, P. Wiesiołek-Kurek et al., “Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease,” Liver International, vol. 7, pp. 1074–1083, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Kurek, P. Wiesiołek-Kurek, D. M. Piotrowska, B. Łukaszuk, A. Chabowski, and M. Zendzian-Piotrowska, “Inhibition of ceramide de novo synthesis with myriocin affects lipid metabolism in the liver of rats with streptozotocin-induced type 1 diabetes,” BioMed Research International, vol. 2014, Article ID 980815, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-K. Min, H.-S. Yoo, E.-Y. Lee, W.-J. Lee, and Y.-M. Lee, “Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase,” Analytical Biochemistry, vol. 303, no. 2, pp. 167–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Liu and Y. A. Hannun, “Sphingomyelinase assay using radiolabeled substrate,” Methods in Enzymology, vol. 311, pp. 164–167, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Nikolova-Karakashian and A. H. Merrill Jr., “Ceramidases,” Methods in Enzymology, vol. 311, pp. 194–201, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Muoio and C. B. Newgard, “Obesity-related derangements in metabolic regulation,” Annual Review of Biochemistry, vol. 75, pp. 367–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Yang, L. Badeanlou, J. Bielawski, A. J. Roberts, Y. A. Hannun, and F. Samad, “Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome,” The American Journal of Physiology: Endocrinology and Metabolism, vol. 297, no. 1, pp. E211–E224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. L. Holland, T. A. Knotts, J. A. Chavez, L.-P. Wang, K. L. Hoehn, and S. A. Summers, “Lipid mediators of insulin resistance,” Nutrition Reviews, vol. 65, no. 6, pp. S39–S46, 2007. View at Google Scholar · View at Scopus
  29. M. L. Watson, M. Coghlan, and H. S. Hundal, “Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells,” Biochemical Journal, vol. 417, no. 3, pp. 791–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. H. Unger, “Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome,” Endocrinology, vol. 144, no. 12, pp. 5159–5165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Liu, Y. Zhang, N. Chen, X. Shi, B. Tsang, and Y.-H. Yu, “Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance,” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1679–1689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Pickersgill, G. J. Litherland, A. S. Greenberg, M. Walker, and S. J. Yeaman, “Key role for ceramides in mediating insulin resistance in human muscle cells,” Journal of Biological Chemistry, vol. 282, no. 17, pp. 12583–12589, 2007. View at Publisher · View at Google Scholar · View at Scopus