Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2015 (2015), Article ID 479565, 11 pages
http://dx.doi.org/10.1155/2015/479565
Research Article

Maternal Hyperglycemia Directly and Rapidly Induces Cardiac Septal Overgrowth in Fetal Rats

1Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
2Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
3Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA

Received 9 December 2014; Revised 28 March 2015; Accepted 22 April 2015

Academic Editor: Christoph H. Saely

Copyright © 2015 Erin E. Gordon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. P. Gutgesell, M. E. Speer, and H. S. Rosenberg, “Characterization of the cardiomyopathy in infants of diabetic mothers,” Circulation, vol. 61, no. 2, pp. 441–450, 1980. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Åman, U. Hansson, I. Östlund, K. Wall, and B. Persson, “Increased fat mass and cardiac septal hypertrophy in newborn infants of mothers with well-controlled diabetes during pregnancy,” Neonatology, vol. 100, no. 2, pp. 147–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Cooper, M. A. Enderlein, H. Tarnoff, and C. L. Rogé, “Asymmetric septal hypertrophy in infants of diabetic mothers: fetal echocardiography and the impact of maternal diabetic control,” American Journal of Diseases of Children, vol. 146, no. 2, pp. 226–229, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Q. Sheehan, T. W. Rowland, B. L. Shah, V. J. McGravey, and E. O. Reiter, “Maternal diabetic control and hypertrophic cardiomyopathy in infants of diabetic mothers,” Clinical Pediatrics, vol. 25, no. 5, pp. 266–271, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Vela-Huerta, A. Vargas-Origel, and A. Olvera-López, “Asymmetrical septal hypertrophy in newborn infants of diabetic mothers,” American Journal of Perinatology, vol. 17, no. 2, pp. 89–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Abu-Sulaiman and B. Subaih, “Congenital heart disease in infants of diabetic mothers: echocardiographic study,” Pediatric Cardiology, vol. 25, no. 2, pp. 137–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Mongiovì, V. Fesslova, G. Fazio, G. Barbaro, and S. Pipitone, “Diagnosis and prognosis of fetal cardiomyopathies: a review,” Current Pharmaceutical Design, vol. 16, no. 26, pp. 2929–2934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. El-Ganzoury, S. A. El-Masry, R. A. El-Farrash, M. Anwar, and R. Z. Abd Ellatife, “Infants of diabetic mothers: echocardiographic measurements and cord blood IGF-I and IGFBP-1,” Pediatric Diabetes, vol. 13, no. 2, pp. 189–196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ren, Q. Zhou, Y. Yan, C. Chu, Y. Gui, and X. Li, “Characterization of fetal cardiac structure and function detected by echocardiography in women with normal pregnancy and gestational diabetes mellitus,” Prenatal Diagnosis, vol. 31, no. 5, pp. 459–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Alsweiler, J. E. Harding, and F. H. Bloomfield, “Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial,” Pediatrics, vol. 129, no. 4, pp. 639–647, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. H. S. Weber, J. J. Botti, and B. G. Baylen, “Sequential longitudinal evaluation of cardiac growth and ventricular diastolic filling in fetuses of well controlled diabetic mothers,” Pediatric Cardiology, vol. 15, no. 4, pp. 184–189, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Gandhi, X. Y. Zhang, and J. E. Maidman, “Fetal cardiac hypertrophy and cardiac function in diabetic pregnancies,” American Journal of Obstetrics & Gynecology, vol. 173, no. 4, pp. 1132–1136, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. H. S. Weber, J. A. Copel, E. A. Reece, J. Green, and C. S. Kleinman, “Cardiac growth in fetuses of diabetic mothers with good metabolic control,” The Journal of Pediatrics, vol. 118, no. 1, pp. 103–107, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Oberhoffer, J. Högel, F. Stoz, E. Kohne, and D. Lang, “Cardiac and extracardiac complications in infants of diabetic mothers and their relation to parameters of carbohydrate metaholism,” European Journal of Pediatrics, vol. 156, no. 4, pp. 262–265, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. A. R. Hayati, F. C. Cheah, J. F. Yong, A. E. Tan, and W. M. Norizah, “The role of serum insulin-like growth factor I (IGF-I) in neonatal outcome,” Journal of Clinical Pathology, vol. 57, no. 12, pp. 1299–1301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Yao, C. Wang, S. A. Walsh et al., “Localized fetomaternal hyperglycemia: spatial and kinetic definition by positron emission tomography,” PLoS ONE, vol. 5, no. 8, Article ID e12027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Baack, C. Wang, S. Hu, J. L. Segar, and A. W. Norris, “Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: an in vivo test of the fuel mediated teratogenesis hypothesis,” Reproductive Toxicology, vol. 46, pp. 129–136, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Yamazaki, I. Komuro, I. Shiojima, and Y. Yazaki, “Angiotensin II mediates mechanical stress-induced cardiac hypertrophy,” Diabetes Research and Clinical Practice, vol. 30, supplement, pp. 107–111, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Shen, X. Diao, X. Wang, R. Chen, and B. Hu, “MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy,” The American Journal of Pathology, vol. 179, no. 2, pp. 639–650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Chang, Q. Zhang, Q. Feng et al., “Deletion of Akt1 causes heart defects and abnormal cardiomyocyte proliferation,” Developmental Biology, vol. 347, no. 2, pp. 384–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. O. F. Bueno, L. J. De Windt, K. M. Tymitz et al., “The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice,” The EMBO Journal, vol. 19, no. 23, pp. 6341–6350, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Levine and A. M. Puzio-Kuter, “The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes,” Science, vol. 330, no. 6009, pp. 1340–1344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. R. Christofk, M. G. V. Heiden, M. H. Harris et al., “The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth,” Nature, vol. 452, no. 7184, pp. 230–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. G. Vander Heiden, J. W. Locasale, K. D. Swanson et al., “Evidence for an alternative glycolytic pathway in rapidly proliferating cells,” Science, vol. 329, no. 5998, pp. 1492–1499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. K. Redel, A. N. Brown, L. D. Spate, K. M. Whitworth, J. A. Green, and R. S. Prather, “Glycolysis in preimplantation development is partially controlled by the Warburg effect,” Molecular Reproduction and Development, vol. 79, no. 4, pp. 262–271, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Ma, H. J. Sung, J. Y. Park, S. Matoba, and P. M. Hwang, “A pivotal role for p53: balancing aerobic respiration and glycolysis,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 3, pp. 243–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Nold and M. K. Georgieff, “Infants of diabetic mothers,” Pediatric Clinics of North America, vol. 51, no. 3, pp. 619–637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. F. Philipps, P. J. Porte, S. Stabinsky, T. S. Rosenkrantz, and J. R. Raye, “Effects of chronic fetal hyperglycemia upon oxygen consumption in the ovine uterus and conceptus,” Journal of Clinical Investigation, vol. 74, no. 1, pp. 279–286, 1984. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J. A. M. Leunissen, “Primer3Plus, an enhanced web interface to Primer3,” Nucleic Acids Research, vol. 35, no. 2, pp. W71–W74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction,” Nucleic Acids Research, vol. 31, no. 13, pp. 3406–3415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Takei, S. Iizuka, M. Yamamoto, S. Takeda, and K. Arishima, “The herbal medicine Tokishakuyakusan increases fetal blood glucose concentrations and growth hormone levels and improves intrauterine growth retardation induced by N(omega)-nitro-L-arginine methyl ester,” Journal of Pharmacological Sciences, vol. 104, no. 4, pp. 319–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Lesage, D. Hahn, M. Léonhardt, B. Blondeau, B. Bréant, and J. P. Dupouy, “Maternal undernutrition during late gestation-induced intrauterine growth restriction in the rat is associated with impaired placental GLUT3 expression, but does not correlate with endogenous corticosterone levels,” The Journal of Endocrinology, vol. 174, no. 1, pp. 37–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. M. Lewis, L. A. James, J. Zhang, C. D. Byrne, and C. N. Hales, “Effects of maternal iron restriction in the rat on hypoxia-induced gene expression and fetal metabolite levels,” The British Journal of Nutrition, vol. 85, no. 2, pp. 193–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. H. F. Sadiq, U. G. Das, T. F. Tracy, and S. U. Devaskar, “Intra-uterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters,” Brain Research, vol. 823, no. 1-2, pp. 96–103, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. N. R. Sundaresan, P. Vasudevan, L. Zhong et al., “The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun,” Nature Medicine, vol. 18, no. 11, pp. 1643–1650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Kaczmarczyk, S. Andrikopoulos, J. Favaloro et al., “Threshold effects of glucose transporter-4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy,” Journal of Molecular Endocrinology, vol. 31, no. 3, pp. 449–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. H. C. Miller and H. M. Wilson, “Macrosomia, cardiac hypertrophy, erythroblastosis, and hyperplasia of the islands of langerhans in infants born to diabetic mothers,” The Journal of Pediatrics, vol. 23, no. 3, pp. 251–266, 1943. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Miodovnik, J. P. Lavin, D. J. Harrington, L. Leung, A. E. Seeds, and K. E. Clark, “Cardiovascular and biochemical effects of infusion of beta hydroxybutyrate into the fetal lamb,” American Journal of Obstetrics & Gynecology, vol. 144, no. 5, pp. 594–600, 1982. View at Google Scholar · View at Scopus
  39. C. A. Riquelme, J. A. Magida, B. C. Harrison et al., “Fatty acids identified in the Burmese python promote beneficial cardiac growth,” Science, vol. 334, no. 6055, pp. 528–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Lou, I. Danelisen, and P. K. Singal, “Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 288, no. 4, pp. H1925–H1930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. T. Ramirez, V. P. Sah, X.-L. Zhao, J. J. Hunter, K. R. Chien, and J. H. Brown, “The MEKK-JNK pathway is stimulated by α1-adrenergic receptor and Ras activation and is associated with in vitro and in vivo cardiac hypertrophy,” The Journal of Biological Chemistry, vol. 272, no. 22, pp. 14057–14061, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Liang and J. D. Molkentin, “Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 12, pp. 1385–1394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. B. E. Reinking, E. W. Wedemeyer, R. M. Weiss, J. L. Segar, and T. D. Scholz, “Cardiomyopathy in offspring of diabetic rats is associated with activation of the MAPK and apoptotic pathways,” Cardiovascular Diabetology, vol. 8, article 43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. D. Nitert, H. L. Barrett, M. H. Kubala et al., “Increased placental expression of fibroblast growth factor 21 in gestational diabetes mellitus,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 4, pp. E591–E598, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Colomiere, M. Permezel, C. Riley, G. Desoye, and M. Lappas, “Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus,” European Journal of Endocrinology, vol. 160, no. 4, pp. 567–578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Z.-C. Luo, A.-M. Nuyt, E. Delvin et al., “Maternal and fetal IGF-I and IGF-II levels, fetal growth, and gestational diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 5, pp. 1720–1728, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Clark Jr., “The stimulation by insulin of amino acid uptake and protein synthesis in the isolated fetal rat heart,” Biology of the Neonate, vol. 19, no. 4, pp. 379–388, 1971. View at Publisher · View at Google Scholar · View at Scopus
  48. S. U. Devaskar, K. Szewczyk, and U. P. Devaskar, “The fetal heart insulin receptor responds differently to varying plasma insulin concentrations,” Developmental Pharmacology and Therapeutics, vol. 10, no. 3, pp. 153–162, 1987. View at Google Scholar · View at Scopus
  49. L. Bertrand, S. Horman, C. Beauloye, and J.-L. Vanoverschelde, “Insulin signalling in the heart,” Cardiovascular Research, vol. 79, no. 2, pp. 238–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Shimizu, T. Minamino, H. Toko et al., “Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents,” The Journal of Clinical Investigation, vol. 120, no. 5, pp. 1506–1514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. T. T. Huang, A. Kelly, S. A. Becker, M. S. Cohen, and C. A. Stanley, “Hypertrophic cardiomyopathy in neonates with congenital hyperinsulinism,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 98, no. 4, pp. F351–F354, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. C. T. Jones and T. P. Rolph, “Metabolism during fetal life: a functional assessment of metabolic development,” Physiological Reviews, vol. 65, no. 2, pp. 357–430, 1985. View at Google Scholar · View at Scopus
  53. L. Lehtoranta, O. Vuolteenaho, V. J. Laine et al., “Maternal hyperglycemia leads to fetal cardiac hyperplasia and dysfunction in a rat model,” American Journal of Physiology—Endocrinology and Metabolism, vol. 305, no. 5, pp. E611–E619, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. A. W. Norris, T. M. Bahr, T. D. Scholz, E. S. Peterson, K. A. Volk, and J. L. Segar, “Angiotensin II-induced cardiovascular load regulates cardiac remodeling and related gene expression in late-gestation fetal sheep,” Pediatric Research, vol. 75, no. 6, pp. 689–696, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. N. J. Sissman, “Developmental landmarks in cardiac morphogenesis: comparative chronology,” The American Journal of Cardiology, vol. 25, no. 2, pp. 141–148, 1970. View at Publisher · View at Google Scholar · View at Scopus
  56. S. R. Boerth, D. B. Zimmer, and M. Artman, “Steady-state mRNA levels of the sarcolemmal Na+-Ca2+ exchanger peak near birth in developing rabbit and rat hearts,” Circulation Research, vol. 74, no. 2, pp. 354–359, 1994. View at Publisher · View at Google Scholar · View at Scopus