Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016 (2016), Article ID 2798269, 18 pages
http://dx.doi.org/10.1155/2016/2798269
Review Article

Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

1Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
2Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
3Research Department of Structural and Molecule Biology, University College London, Gower Street, London WC1E 6BT, UK

Received 27 February 2015; Accepted 24 April 2015

Academic Editor: Lucie Khemtemourian

Copyright © 2016 Rehana Akter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. L. Opie, “The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of Langerhans,” The Journal of Experimental Medicine, vol. 5, no. 5, pp. 527–540, 1901. View at Publisher · View at Google Scholar
  2. P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O'Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 11, pp. 3881–3885, 1987. View at Publisher · View at Google Scholar · View at Scopus
  3. G. J. S. Cooper, A. C. Willis, A. Clark, R. C. Turner, R. B. Sim, and K. B. M. Reid, “Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 23, pp. 8628–8632, 1987. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Westermark, A. Andersson, and G. T. Westermark, “Islet amyloid polypeptide, islet amyloid, and diabetes mellitus,” Physiological Reviews, vol. 91, no. 3, pp. 795–826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. A. Lutz, “The role of amylin in the control of energy homeostasis,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 298, no. 6, pp. R1475–R1484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Montane, A. Klimek-Abercrombie, K. J. Potter, C. Westwell-Roper, and C. B. Verchere, “Metabolic stress, IAPP and islet amyloid,” Diabetes, Obesity and Metabolism, vol. 14, no. 3, pp. 68–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Sanke, G. I. Bell, C. Sample, A. H. Rubenstein, and D. F. Steiner, “An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing,” The Journal of Biological Chemistry, vol. 263, no. 33, pp. 17243–17246, 1988. View at Google Scholar · View at Scopus
  8. L. Marzban, G. Trigo-Gonzalez, and C. B. Verchere, “Processing of pro-islet amyloid polypeptide in the constitutive and regulated secretory pathways of β cells,” Molecular Endocrinology, vol. 19, no. 8, pp. 2154–2163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Lukinius, E. Wilander, G. T. Westermark, U. Engstrom, and P. Westermark, “Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets,” Diabetologia, vol. 32, no. 4, pp. 240–244, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Kahn, D. A. D'Alessio, M. W. Schwartz et al., “Evidence of cosecretion of islet amyloid polypeptide and insulin by β-cells,” Diabetes, vol. 39, no. 5, pp. 634–638, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Stridsberg, S. Sandler, and E. Wilander, “Cosecretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic islets following stimulation or inhibition of beta-cell function,” Regulatory Peptides, vol. 45, no. 3, pp. 363–370, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Cao, P. Marek, H. Noor et al., “Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity,” FEBS Letters, vol. 587, no. 8, pp. 1106–1118, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Cao, A. Abedini, and D. P. Raleigh, “Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology,” Current Opinion in Structural Biology, vol. 23, no. 1, pp. 82–89, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Fernández, “Human IAPP amyloidogenic properties and pancreatic β-cell death,” Cell Calcium, vol. 56, no. 5, pp. 416–427, 2014. View at Publisher · View at Google Scholar
  15. A. Abedini and A. M. Schmidt, “Mechanisms of islet amyloidosis toxicity in type 2 diabetes,” FEBS Letters, vol. 587, no. 8, pp. 1119–1127, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Despa, S. Sharma, T. R. Harris et al., “Cardioprotection by controlling hyperamylinemia in a ‘humanized’ diabetic rat model,” Journal of the American Heart Association, vol. 3, no. 4, Article ID e001015, 2014. View at Publisher · View at Google Scholar
  17. S. Zhang, H. Liu, C. L. Chuang et al., “The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells,” The FASEB Journal, vol. 28, no. 12, pp. 5083–5096, 2014. View at Publisher · View at Google Scholar
  18. J. F. Paulsson, J. Ludvigsson, A. Carlsson et al., “High plasma levels of islet amyloid polypeptide in young with new-onset of type 1 diabetes mellitus,” PLoS ONE, vol. 9, no. 3, Article ID e93053, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Westermark, U. Engstrom, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 13, pp. 5036–5040, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. T. T. Ashburn and P. T. Lansbury Jr., “Interspecies sequence variations affect the kinetics and thermodynamics of amyloid formation: peptide models of pancreatic amyloid,” Journal of the American Chemical Society, vol. 115, no. 23, pp. 11012–11013, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Betsholtz, L. Christmansson, U. Engstrom et al., “Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species,” FEBS Letters, vol. 251, no. 1-2, pp. 261–264, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Nilsson and D. P. Raleigh, “Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin,” Journal of Molecular Biology, vol. 294, no. 5, pp. 1375–1385, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Scrocchi, K. Ha, Y. Chen, L. Wu, F. Wang, and P. E. Fraser, “Identification of minimal peptide sequences in the (8–20) domain of human islet amyloid polypeptide involved in fibrillogenesis,” Journal of Structural Biology, vol. 141, no. 3, pp. 218–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gilead and E. Gazit, “The role of the 14–20 domain of the islet amyloid polypeptide in amyloid formation,” Experimental Diabetes Research, vol. 2008, Article ID 256954, 8 pages, 2008. View at Publisher · View at Google Scholar
  25. Y. Mazor, S. Gilead, I. Benhar, and E. Gazit, “Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide,” Journal of Molecular Biology, vol. 322, no. 5, pp. 1013–1024, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. W. Wiltzius, S. A. Sievers, M. R. Sawaya, and D. Eisenberg, “Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process,” Protein Science, vol. 18, no. 7, pp. 1521–1530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gilead, H. Wolfenson, and E. Gazit, “Molecular mapping of the recognition interface between the islet amyloid polypeptide and insulin,” Angewandte Chemie International Edition, vol. 45, no. 39, pp. 6476–6480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Andreetto, L. M. Yan, M. Tatarek-Nossol, A. Velkova, and A. Kapurniotu, “Identification of hot regions of the A beta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association,” Angewandte Chemie International Edition, vol. 45, pp. 6476–6480, 2010. View at Google Scholar
  29. A. Abedini and D. P. Raleigh, “Destabilization of human IAPP amyloid fibrils by proline mutations outside of the putative amyloidogenic domain: is there a critical amyloidogenic domain in human IAPP?” Journal of Molecular Biology, vol. 355, no. 2, pp. 274–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. W. Koo, J. A. Hebda, and A. D. Miranker, “Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide,” Protein Engineering, Design and Selection, vol. 21, no. 3, pp. 147–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Green, C. Goldsbury, T. Mini et al., “Full-length rat amylin forms fibrils following substitution of single residues from human amylin,” Journal of Molecular Biology, vol. 326, no. 4, pp. 1147–1156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Abedini, F. L. Meng, and D. P. Raleigh, “A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor,” Journal of the American Chemical Society, vol. 129, no. 37, pp. 11300–11301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Meng, D. P. Raleigh, and A. Abedini, “Combination of kinetically selected inhibitors in trans leads to highly effective inhibition of amyloid formation,” Journal of the American Chemical Society, vol. 132, no. 41, pp. 14340–14342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L.-M. Yan, M. Tatarek-Nossol, A. Velkova, A. Kazantzis, and A. Kapurniotu, “Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2046–2051, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Luca, W.-M. Yau, R. Leapman, and R. Tycko, “Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR,” Biochemistry, vol. 46, no. 47, pp. 13505–13522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. W. Wiltzius, S. A. Sievers, M. R. Sawaya et al., “Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin),” Protein Science, vol. 17, no. 9, pp. 1467–1474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. T. Alexandrescu, “Amide proton solvent protection in amylin fibrils probed by quenched hydrogen exchange NMR,” PLoS ONE, vol. 8, no. 2, Article ID e56467, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Wang, C. T. Middleton, S. Singh et al., “2DIR spectroscopy of human amylin fibrils reflects stable β-sheet structure,” Journal of the American Chemical Society, vol. 133, no. 40, pp. 16062–16071, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Radovan, V. Smirnovas, and R. Winter, “Effect of pressure on islet amyloid polypeptide aggregation: revealing the polymorphic nature of the fibrillation process,” Biochemistry, vol. 47, no. 24, pp. 6352–6360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Wineman-Fisher, Y. Atsmon-Raz, and Y. Miller, “Orientations of residues along the β-arch of self-assembled amylin fibril-like structures lead to polymorphism,” Biomacromolecules, vol. 16, no. 1, pp. 156–165, 2015. View at Publisher · View at Google Scholar
  41. R. Tycko, “Physical and structural basis for polymorphism in amyloid fibrils,” Protein Science, vol. 23, no. 11, pp. 1528–1539, 2014. View at Publisher · View at Google Scholar
  42. C. S. Goldsbury, G. J. S. Cooper, K. N. Goldie et al., “Polymorphic fibrillar assembly of human amylin,” Journal of Structural Biology, vol. 119, no. 1, pp. 17–27, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Bedrood, Y. Li, J. M. Isas et al., “Fibril structure of human islet amyloid polypeptide,” The Journal of Biological Chemistry, vol. 287, no. 8, pp. 5235–5241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. L. E. Buchanan, E. B. Dunkelberger, H. Q. Tran et al., “Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 48, pp. 19285–19290, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. T. M. Doran, E. A. Anderson, S. E. Latchney, L. A. Opanashuk, and B. L. Nilsson, “Turn nucleation perturbs amyloid β self-assembly and cytotoxicity,” Journal of Molecular Biology, vol. 421, no. 2-3, pp. 315–328, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Abedini, R. Gupta, P. Marek et al., “Role of posttranslational modifications in amyloid formation,” in Protein Misfolding Diseases: Current and Emerging Principles and Therapies, M. Ramirez-Alvarado, J. W. Kelly, and C. M. Dobson, Eds., John Wiley & Sons, Hoboken, NJ, USA, 2010. View at Google Scholar
  47. E. B. Dunkelberger, L. E. Buchanan, P. Marek, P. Cao, D. P. Raleigh, and M. T. Zanni, “Deamidation accelerates amyloid formation and alters amylin fiber structure,” Journal of the American Chemical Society, vol. 134, no. 30, pp. 12658–12667, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. M. R. Nilsson, M. Driscoll, and D. P. Raleigh, “Low levels of asparagine deamidation can have a dramatic effect on aggregation of amyloidogenic peptides: implications for the study of amyloid formation,” Protein Science, vol. 11, no. 2, pp. 342–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Sakagashira, T. Sanke, T. Hanabusa et al., “Missense mutation of amylin gene (S20G) in Japanese NIDDM patients,” Diabetes, vol. 45, no. 9, pp. 1279–1281, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Sakagashira, H. J. Hiddinga, K. Tateishi et al., “S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wild-type amylin,” The American Journal of Pathology, vol. 157, no. 6, pp. 2101–2109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Ma, G. T. Westermark, S. Sakagashira et al., “Enhanced in vitro production of amyloid-like fibrils from mutant (S20G) islet amyloid polypeptide,” Amyloid, vol. 8, no. 4, pp. 242–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Cao, L.-H. Tu, A. Abedini et al., “Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20,” Journal of Molecular Biology, vol. 421, no. 2-3, pp. 282–295, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Fox, T. Snollaerts, C. Errecart Casanova, A. Calciano, L. A. Nogaj, and D. A. Moffet, “Selection for nonamyloidogenic mutants of islet amyloid polypeptide (IAPP) identifies an extended region for amyloidogenicity,” Biochemistry, vol. 49, no. 36, pp. 7783–7789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Marek, A. Abedini, B. B. Song et al., “Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology,” Biochemistry, vol. 46, no. 11, pp. 3255–3261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L.-H. Tu and D. P. Raleigh, “Role of aromatic interactions in amyloid formation by islet amyloid polypeptide,” Biochemistry, vol. 52, no. 2, pp. 333–342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Konarkowska, J. F. Aitken, J. Kistler, S. Zhang, and G. J. S. Cooper, “The aggregation potential of human amylin determines its cytotoxicity towards islet β-cells,” The FEBS Journal, vol. 273, no. 15, pp. 3614–3624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Azriel and E. Gazit, “Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation,” The Journal of Biological Chemistry, vol. 276, no. 36, pp. 34156–34161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Gazit, “A possible role for π-stacking in the self-assembly of amyloid fibrils,” The FASEB Journal, vol. 16, no. 1, pp. 77–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. Tracz, A. Abedini, M. Driscoll, and D. P. Raleigh, “Role of aromatic interactions in amyloid formation by peptides derived from human amylin,” Biochemistry, vol. 43, no. 50, pp. 15901–15908, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. L.-H. Tu, A. L. Serrano, M. T. Zanni, and D. P. Raleigh, “Mutational analysis of preamyloid intermediates: The role of His-Tyr interactions in islet amyloid formation,” Biophysical Journal, vol. 106, no. 7, pp. 1520–1527, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Park and C. B. Verchere, “Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide—implications for islet amyloid formation,” The Journal of Biological Chemistry, vol. 276, no. 20, pp. 16611–16616, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. J. F. Paulsson and G. T. Westermark, “Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation,” Diabetes, vol. 54, no. 7, pp. 2117–2125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Marzban, C. J. Rhodes, D. F. Steiner, L. Haataja, P. A. Halban, and C. B. Verchere, “Impaired NH2-terminal processing of human proislet amyloid polypeptide by the prohormone convertase PC2 leads to amyloid formation and cell death,” Diabetes, vol. 55, no. 8, pp. 2192–2201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Meng, A. Abedini, B. Song, and D. P. Raleigh, “Amyloid formation by pro-islet amyloid polypeptide processing intermediates: examination of the role of protein heparan sulfate interactions and implications for islet amyloid formation in type 2 diabetes,” Biochemistry, vol. 46, no. 43, pp. 12091–12099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Wang and D. P. Raleigh, “The ability of insulin to inhibit the formation of amyloid by pro-islet amyloid polypeptide processing intermediates is significantly reduced in the presence of sulfated glycosaminoglycans,” Biochemistry, vol. 53, no. 16, pp. 2605–2614, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. E. T. A. S. Jaikaran and A. Clark, “Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1537, no. 3, pp. 179–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. R. L. Hull, G. T. Westermark, P. Westermark, and S. E. Kahn, “Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 8, pp. 3629–3643, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. J. C. Hutton, “The internal pH and membrane potential of the insulin-secretory granule,” Biochemical Journal, vol. 204, no. 1, pp. 171–178, 1982. View at Google Scholar · View at Scopus
  69. S. B. P. Charge, E. J. P. De Koning, and A. Clark, “Effect of pH and insulin on fibrillogenesis of islet amyloid polypeptide in vitro,” Biochemistry, vol. 34, no. 44, pp. 14588–14593, 1995. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Abedini and D. P. Raleigh, “The role of His-18 in amyloid formation by human islet amyloid polypeptide,” Biochemistry, vol. 44, no. 49, pp. 16284–16291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Westermark, Z.-C. Li, G. T. Westermark, A. Leckström, and D. F. Steiner, “Effects of beta cell granule components on human islet amyloid polypeptide fibril formation,” FEBS Letters, vol. 379, no. 3, pp. 203–206, 1996. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Janciauskiene, S. Eriksson, E. Carlemalm, and B. Ahrén, “B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro,” Biochemical and Biophysical Research Communications, vol. 236, no. 3, pp. 580–585, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. E. T. A. S. Jaikaran, M. R. Nilsson, and A. Clark, “Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation,” Biochemical Journal, vol. 377, no. 3, pp. 709–716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. J. L. Larson and A. D. Miranker, “The mechanism of insulin action on islet amyloid polypeptide fiber formation,” Journal of Molecular Biology, vol. 335, no. 1, pp. 221–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. D. Knight, J. A. Williamson, and A. D. Miranker, “Interaction of membrane-bound islet amyloid polypeptide with soluble and crystalline insulin,” Protein Science, vol. 17, no. 10, pp. 1850–1856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. L. M. McLatchie, N. J. Fraser, M. J. Main et al., “RAMPS regulate the transport and ligand specificity of the calcitonin- receptor-like receptor,” Nature, vol. 393, no. 6683, pp. 333–339, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Muff, N. Bühlmann, J. A. Fischer, and W. Born, “An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3,” Endocrinology, vol. 140, no. 6, pp. 2924–2927, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Christopoulos, K. J. Perry, M. Morfis et al., “Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product,” Molecular Pharmacology, vol. 56, no. 1, pp. 235–242, 1999. View at Google Scholar · View at Scopus
  79. R. J. Bailey, C. S. Walker, A. H. Ferner et al., “Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes,” British Journal of Pharmacology, vol. 166, no. 1, pp. 151–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Y. Wielinga, C. Löwenstein, S. Muff, M. Munz, S. C. Woods, and T. A. Lutz, “Central amylin acts as an adiposity signal to control body weight and energy expenditure,” Physiology and Behavior, vol. 101, no. 1, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. C. S. Potes and T. A. Lutz, “Brainstem mechanisms of amylin-induced anorexia,” Physiology and Behavior, vol. 100, no. 5, pp. 511–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. L. Trevaskis, D. G. Parkes, and J. D. Roth, “Insights into amylin-leptin synergy,” Trends in Endocrinology and Metabolism, vol. 21, no. 8, pp. 473–479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. Z.-L. Wang, W. M. Bennet, M. A. Ghatei, P. G. H. Byfield, D. M. Smith, and S. R. Bloom, “Influence of islet amyloid polypeptide and the 8-37 fragment of islet amyloid polypeptide on insulin release from perifused rat islets,” Diabetes, vol. 42, no. 2, pp. 330–335, 1993. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Young, “Inhibition of insulin secretion,” Advances in Pharmacology, vol. 52, pp. 173–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. G. J. S. Cooper, B. Leighton, G. D. Dimitriadis et al., “Amylin found in amyloid deposits in human type-2 diabetes-mellitus may be a hormone that regulates glycogen-metabolism in skeletal-muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 20, pp. 7763–7766, 1988. View at Publisher · View at Google Scholar · View at Scopus
  86. D. L. Morris and L. Rui, “Recent advances in understanding leptin signaling and leptin resistance,” American Journal of Physiology—Endocrinology and Metabolism, vol. 297, no. 6, pp. E1247–E1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. J. D. Roth, H. Hughes, E. Kendall, A. D. Baron, and C. M. Anderson, “Antiobesity effects of the β-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression,” Endocrinology, vol. 147, no. 12, pp. 5855–5864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. T. A. Lutz, “The interaction of amylin with other hormones in the control of eating,” Diabetes, Obesity and Metabolism, vol. 15, no. 2, pp. 99–111, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. J. A. Williamson and A. D. Miranker, “Direct detection of transient α-helical states in islet amyloid polypeptide,” Protein Science, vol. 16, no. 1, pp. 110–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. J. A. Williamson, J. P. Loria, and A. D. Miranker, “Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide,” Journal of Molecular Biology, vol. 393, no. 2, pp. 383–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. J. D. Knight, J. A. Hebda, and A. D. Miranker, “Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide,” Biochemistry, vol. 45, no. 31, pp. 9496–9508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. R. P. R. Nanga, J. R. Brender, J. Xu, K. Hartman, V. Subramanian, and A. Ramamoorthy, “Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy,” Journal of the American Chemical Society, vol. 131, no. 23, pp. 8252–8261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. R. P. R. Nanga, J. R. Brender, J. Xu, G. Veglia, and A. Ramamoorthy, “Structures of rat and human islet amyloid polypeptide IAPP1–19 in micelles by NMR spectroscopy,” Biochemistry, vol. 47, no. 48, pp. 12689–12697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. R. P. R. Nanga, J. R. Brender, S. Vivekanandan, and A. Ramamoorthy, “Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1808, no. 10, pp. 2337–2342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. J. R. Brender, K. Hartman, K. R. Reid, R. T. Kennedy, and A. Ramamoorthy, “A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity,” Biochemistry, vol. 47, no. 48, pp. 12680–12688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. P. J. Marek, V. Patsalo, D. F. Green, and D. P. Raleigh, “Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects,” Biochemistry, vol. 51, no. 43, pp. 8478–8490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Li, W. Xu, Y. Mu, and J. Z. H. Zhang, “Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines,” Journal of Chemical Physics, vol. 139, no. 5, Article ID 055102, 2013. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Jha, J. M. Snell, S. R. Sheftic et al., “pH dependence of amylin fibrillization,” Biochemistry, vol. 53, no. 2, pp. 300–310, 2014. View at Publisher · View at Google Scholar · View at Scopus
  99. S. B. P. Charge, E. J. P. de Koning, and A. Clark, “Effect of pH and insulin on fibrillogenesis of islet amyloid polypeptide in vitro,” Biochemistry, vol. 34, no. 44, pp. 14588–14593, 1995. View at Publisher · View at Google Scholar · View at Scopus
  100. S. M. Patil and A. T. Alexandrescu, “Charge-based inhibitors of amylin fibrillization and toxicity,” Journal of Diabetes Research. In press.
  101. H.-H. Tsai, M. Reches, C.-J. Tsai, K. Gunasekaran, E. Gazit, and R. Nussinov, “Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8174–8179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. I. D. Young, L. Ailles, S. Narindrasorasak, R. Tan, and R. Kisilevsky, “Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus,” Archives of Pathology and Laboratory Medicine, vol. 116, no. 9, pp. 951–954, 1992. View at Google Scholar · View at Scopus
  103. J. Vidal, C. B. Verchere, S. Andrikopoulos et al., “The effect of apolipoprotein E deficiency on islet amyloid deposition in human islet amyloid polypeptide transgenic mice,” Diabetologia, vol. 46, no. 1, pp. 71–79, 2003. View at Google Scholar · View at Scopus
  104. S. Jha, S. M. Patil, J. Gibson, C. E. Nelson, N. N. Alder, and A. T. Alexandrescu, “Mechanism of amylin fibrillization enhancement by heparin,” Journal of Biological Chemistry, vol. 286, no. 26, pp. 22894–22904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. R. L. Hull, S. Zraika, J. Udayasankar et al., “Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro,” The American Journal of Physiology: Cell Physiology, vol. 293, no. 5, pp. C1586–C1593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. G. T. Westermark and P. Westermark, “Localized amyloids important in diseases outside the brain—lessons from the islets of Langerhans and the thoracic aorta,” The FEBS Journal, vol. 278, no. 20, pp. 3918–3929, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. J. A. Hebda and A. D. Miranker, “The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes,” Annual Review of Biophysics, vol. 38, no. 1, pp. 125–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Nath, A. D. Miranker, and E. Rhoades, “A membrane-bound antiparallel dimer of rat islet amyloid polypeptide,” Angewandte Chemie—International Edition, vol. 50, no. 46, pp. 10859–10862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. S. A. Jayasinghe and R. Langen, “Lipid membranes modulate the structure of islet amyloid polypeptide,” Biochemistry, vol. 44, no. 36, pp. 12113–12119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Seeliger, K. Weise, N. Opitz, and R. Winter, “The effect of Aβ on IAPP aggregation in the presence of an isolated β-cell membrane,” Journal of Molecular Biology, vol. 421, no. 2-3, pp. 348–363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Wakabayashi and K. Matsuzaki, “Ganglioside-induced amyloid formation by human islet amyloid polypeptide in lipid rafts,” FEBS Letters, vol. 583, no. 17, pp. 2854–2858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Weise, D. Radovan, A. Gohlke, N. Opitz, and R. Winter, “Interaction of hIAPP with model raft membranes and pancreatic β-cells: cytotoxicity of hIAPP oligomers,” ChemBioChem, vol. 11, no. 9, pp. 1280–1290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Caillon, L. Duma, O. Lequin, and L. Khemtemourian, “Cholesterol modulates the interaction of the islet amyloid polypeptide with membranes,” Molecular Membrane Biology, vol. 31, no. 7-8, pp. 239–249, 2014. View at Publisher · View at Google Scholar
  114. T. Gurlo, S. Ryazantsev, C.-J. Huang et al., “Evidence for proteotoxicity in β cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway,” The American Journal of Pathology, vol. 176, no. 2, pp. 861–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Aston-Mourney, R. L. Hull, S. Zraika, J. Udayasankar, S. L. Subramanian, and S. E. Kahn, “Exendin-4 increases islet amyloid deposition but offsets the resultant beta cell toxicity in human islet amyloid polypeptide transgenic mouse islets,” Diabetologia, vol. 54, no. 7, pp. 1756–1765, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Zraika, R. L. Hull, C. B. Verchere et al., “Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence?” Diabetologia, vol. 53, no. 6, pp. 1046–1056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. F. M. Ashcroft and P. Rorsman, “Diabetes mellitus and the β cell: the last ten years,” Cell, vol. 148, no. 6, pp. 1160–1171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. P. A. Halban, K. S. Polonsky, D. W. Bowden et al., “β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 6, pp. 1983–1992, 2014. View at Publisher · View at Google Scholar
  119. W. El-Assaad, J. Buteau, M.-L. Peyot et al., “Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death,” Endocrinology, vol. 144, no. 9, pp. 4154–4163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  120. L. R. Brunham, J. K. Kruit, M. R. Hayden, and C. B. Verchere, “Cholesterol in β-cell dysfunction: the emerging connection between HDL cholesterol and type 2 diabetes,” Current Diabetes Reports, vol. 10, no. 1, pp. 55–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. V. Poitout and R. P. Robertson, “Minireview: secondary β-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity,” Endocrinology, vol. 143, no. 2, pp. 339–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. G. T. Westermark, P. Westermark, C. Berne, and O. Korsgren, “Widespread amyloid deposition in transplanted human pancreatic islets,” The New England Journal of Medicine, vol. 359, no. 9, pp. 977–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Udayasankar, K. Kodama, R. L. Hull et al., “Amyloid formation results in recurrence of hyperglycaemia following transplantation of human IAPP transgenic mouse islets,” Diabetologia, vol. 52, no. 1, pp. 145–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. G. T. Westermark, A. M. Davalli, A. Secchi et al., “Further evidence for amyloid deposition in clinical pancreatic islet grafts,” Transplantation, vol. 93, no. 2, pp. 219–223, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. K. J. Potter, A. Abedini, P. Marek et al., “Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4305–4310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Despa, K. B. Margulies, L. Chen et al., “Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats,” Circulation Research, vol. 110, no. 4, pp. 598–608, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. E. L. Saafi, B. Konarkowska, S. Zhang, J. Kistler, and G. J. S. Cooper, “Ultrastructural evidence that apoptosis is the mechanism by which human amylin evokes death in RINm5F pancreatic islet beta-cells,” Cell Biology International, vol. 25, no. 4, pp. 339–350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. A. E. Butler, J. Janson, W. C. Soeller, and P. C. Butler, “Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes—evidence for role of islet amyloid formation rather than direct action of amyloid,” Diabetes, vol. 52, no. 9, pp. 2304–2314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. G. J. S. Cooper, J. F. Aitken, and S. Zhang, “Is type 2 diabetes an amyloidosis and does it really matter (to patients)?” Diabetologia, vol. 53, no. 6, pp. 1011–1016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. A. V. Matveyenko and P. C. Butler, “β-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes,” Diabetes, vol. 55, no. 7, pp. 2106–2114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Zhang, J. Liu, M. Dragunow, and G. J. S. Cooper, “Fibrillogenic amylin evokes islet β-cell apoptosis through linked activation of a caspase cascade and JNK1,” The Journal of Biological Chemistry, vol. 278, no. 52, pp. 52810–52819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. S. L. Subramanian, S. Zraika, K. Aston-Mourney, J. Udayasankar, and S. E. Kahn, “CJUN N-terminal kinase (JNK) activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets,” Diabetologia, vol. 55, no. 1, pp. 166–174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. J. Park, S. Lee, T. J. Kieffer et al., “Deletion of Fas protects islet beta cells from cytotoxic effects of human islet amyloid polypeptide,” Diabetologia, vol. 55, no. 4, pp. 1035–1047, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. J. F. Rivera, T. Gurlo, M. Daval et al., “Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic Β-cells: protective role of p62-positive cytoplasmic inclusions,” Cell Death and Differentiation, vol. 18, no. 3, pp. 415–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. S. L. Masters, A. Dunne, S. L. Subramanian et al., “Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes,” Nature Immunology, vol. 11, no. 10, pp. 897–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. F. J. Sheedy, A. Grebe, K. J. Rayner et al., “CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation,” Nature Immunology, vol. 14, no. 8, pp. 812–820, 2013. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Zraika, R. L. Hull, J. Udayasankar et al., “Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis,” Diabetologia, vol. 52, no. 4, pp. 626–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. C. Westwell-Roper, D. L. Dai, G. Soukhatcheva et al., “IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction,” Journal of Immunology, vol. 187, no. 5, pp. 2755–2765, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. C. J. Huang, T. Gurlo, L. Haataja et al., “Calcium-activated calpain-2 is a mediator of beta cell dysfunction and apoptosis in type 2 diabetes,” The Journal of Biological Chemistry, vol. 285, no. 1, pp. 339–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Casas, R. Gomis, F. M. Gribble, J. Altirriba, S. Knuutila, and A. Novials, “Impairment of the ubiquitin-proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic β-cell apoptosis,” Diabetes, vol. 56, no. 9, pp. 2284–2294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. R. L. Hull, S. Zraika, J. Udayasankar, K. Aston-Mourney, S. L. Subramanian, and S. E. Kahn, “Amyloid formation in human IAPP transgenic mouse islets and pancreas, and human pancreas, is not associated with endoplasmic reticulum stress,” Diabetologia, vol. 52, no. 6, pp. 1102–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Morita, S. Sakagashira, Y. Shimajiri, N. L. Eberhardt, T. Kondo, and T. Sanke, “Autophagy protects against human islet amyloid polypeptide-associated apoptosis,” Journal of Diabetes Investigation, vol. 2, no. 1, pp. 48–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Janson, R. H. Ashley, D. Harrison, S. McIntyre, and P. C. Butler, “The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles,” Diabetes, vol. 48, no. 3, pp. 491–498, 1999. View at Publisher · View at Google Scholar · View at Scopus
  145. T. A. Mirzabekov, M.-C. Lin, and B. L. Kagan, “Pore formation by the cytotoxic islet amyloid peptide amylin,” The Journal of Biological Chemistry, vol. 271, no. 4, pp. 1988–1992, 1996. View at Publisher · View at Google Scholar · View at Scopus
  146. D. Gupta and J. L. Leahy, “Islet amyloid and type 2 diabetes: overproduction or inadequate clearance and detoxification?” The Journal of Clinical Investigation, vol. 124, no. 8, pp. 3292–3294, 2014. View at Publisher · View at Google Scholar
  147. Y. Bram, A. Frydman-Marom, I. Yanai et al., “Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies,” Scientific Reports, vol. 4, article 4267, 2014. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Trikha and A. M. Jeremic, “Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol,” The Journal of Biological Chemistry, vol. 286, no. 41, pp. 36086–36097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. P. Cao, A. Abedini, H. Wang et al., “Islet amyloid polypeptide toxicity and membrane interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 48, pp. 19279–19284, 2013. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Law, S. Lu, T. J. Kieffer et al., “Differences between amyloid toxicity in alpha and beta cells in human and mouse islets and the role of caspase-3,” Diabetologia, vol. 53, no. 7, pp. 1415–1427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. N. B. Last, E. Rhoades, and A. D. Miranker, “Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 23, pp. 9460–9465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. J. R. Brender, E. L. Lee, M. A. Cavitt, A. Gafni, D. G. Steel, and A. Ramamoorthy, “Amyloid fiber formation and membrane disruption are separate processes localized in two distinct regions of IAPP, the type-2-diabetes-related peptide,” Journal of the American Chemical Society, vol. 130, no. 20, pp. 6424–6429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. M. F. M. Engel, L. Khemtémourian, C. C. Kleijer et al., “Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 16, pp. 6033–6038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. E. Sparr, M. F. M. Engel, D. V. Sakharov et al., “Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers,” FEBS Letters, vol. 577, no. 1-2, pp. 117–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. Y. Porat, S. Kolusheva, R. Jelinek, and E. Gazit, “The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies,” Biochemistry, vol. 42, no. 37, pp. 10971–10977, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Anguiano, R. J. Nowak, and P. T. Lansbury Jr., “Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes,” Biochemistry, vol. 41, no. 38, pp. 11338–11343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. D. Schlamadinger and A. Miranker, “Fiber-dependent and -independent toxicity of islet amyloid polypeptide,” Biophysical Journal, vol. 107, no. 11, pp. 2559–2566, 2014. View at Publisher · View at Google Scholar
  158. J. R. Brender, S. Salamekh, and A. Ramamoorthy, “Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective,” Accounts of Chemical Research, vol. 45, no. 3, pp. 454–462, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. H.-X. X. Zhou, G. Rivas, and A. P. Minton, “Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences,” Annual Review of Biophysics, vol. 37, pp. 375–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. Y. Wang, M. Sarkar, A. E. Smith, A. S. Krois, and G. J. Pielak, “Macromolecular crowding and protein stability,” Journal of the American Chemical Society, vol. 134, no. 40, pp. 16614–16618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Sarkar, J. Lu, and G. J. Pielak, “Protein crowder charge and protein stability,” Biochemistry, vol. 53, no. 10, pp. 1601–1606, 2014. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Senske, L. Törk, B. Born, M. Havenith, C. Herrmann, and S. Ebbinghaus, “Protein stabilization by macromolecular crowding through enthalpy rather than entropy,” Journal of the American Chemical Society, vol. 136, no. 25, pp. 9036–9041, 2014. View at Publisher · View at Google Scholar
  163. M. Sarkar, A. E. Smith, and G. J. Pielak, “Impact of reconstituted cytosol on protein stability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 48, pp. 19342–19347, 2013. View at Publisher · View at Google Scholar · View at Scopus
  164. M. D. Shtilerman, T. T. Ding, and P. T. Lansbury Jr., “Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease?” Biochemistry, vol. 41, no. 12, pp. 3855–3860, 2002. View at Publisher · View at Google Scholar · View at Scopus
  165. L. A. Munishkina, E. M. Cooper, V. N. Uversky, and A. L. Fink, “The effect of macromolecular crowding on protein aggregation and amyloid fibril formation,” Journal of Molecular Recognition, vol. 17, no. 5, pp. 456–464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. Q. Ma, J.-B. Fan, Z. Zhou et al., “The contrasting effect of macromolecular crowding on amyloid fibril formation,” PLoS ONE, vol. 7, no. 4, Article ID e36288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. J. Seeliger, A. Werkmüller, and R. Winter, “Macromolecular crowding as a suppressor of human IAPP fibril formation and cytotoxicity,” PLoS ONE, vol. 8, no. 7, Article ID e69652, 2013. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Gao, K. Estel, J. Seeliger et al., “Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones,” Physical Chemistry Chemical Physics, vol. 17, no. 13, pp. 8338–8348, 2015. View at Publisher · View at Google Scholar
  169. M. Gao and R. Winter, “The effects of lipid membranes, crowding and osmolytes on the aggregation, and fibrillation propensity of human IAPP,” Journal of Diabetes Research. In press.
  170. D. F. Kruger and M. A. Gloster, “Pramlintide for the treatment of insulin-requiring diabetes mellitus: rationale and review of clinical data,” Drugs, vol. 64, no. 13, pp. 1419–1432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. R. E. Ratner, R. Dickey, M. Fineman et al., “Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1-year, randomized controlled trial,” Diabetic Medicine, vol. 21, no. 11, pp. 1204–1212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. F. D. Allard, A. E. Wallace, and C. J. Greenbaum, “Emerging therapies: going beyond insulin in treating individuals with type 1 diabetes mellitus,” Current Opinion in Endocrinology and Diabetes, vol. 12, no. 4, pp. 303–308, 2005. View at Google Scholar · View at Scopus
  173. H. E. Lebovitz, “Adjunct therapy for type 1 diabetes mellitus,” Nature Reviews Endocrinology, vol. 6, no. 6, pp. 326–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. K. G. Sam and G. Tungha, “Emergence of promising therapies in diabetes mellitus,” The Journal of Clinical Pharmacology, vol. 51, pp. 796–804, 2011. View at Google Scholar
  175. J. D. Roth, B. L. Roland, R. L. Cole et al., “Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 20, pp. 7257–7262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. H. Wang, A. Abedini, B. Ruzsicska, and D. P. Raleigh, “Rationally designed, nontoxic, nonamyloidogenic analogues of human islet amyloid polypeptide with improved solubility,” Biochemistry, vol. 53, no. 37, pp. 5876–5884, 2014. View at Publisher · View at Google Scholar
  177. R. Kowalczyk, M. A. Brimble, Y. Tomabechi, A. J. Fairbanks, M. Fletcher, and D. L. Hay, “Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure–activity relationships for amylin receptor agonism,” Organic & Biomolecular Chemistry, vol. 12, no. 41, pp. 8142–8151, 2014. View at Publisher · View at Google Scholar
  178. M. F. A. N. Guterres, L. H. Guerreiro, B. Melo-Ferreira, L. C. S. Erthal, and L. M. T. R. Lima, “Amylin conjugation with methoxyl polyethyleneglycol,” Protein and Peptide Letters, vol. 20, no. 11, pp. 1264–1271, 2013. View at Publisher · View at Google Scholar · View at Scopus
  179. L.-M. Yan, A. Velkova, M. Tatarek-Nossol et al., “Selectively N-methylated soluble IAPP mimics as potent IAPP receptor agonists and nanomolar inhibitors of cytotoxic self-assembly of both IAPP and Aβ40,” Angewandte Chemie—International Edition, vol. 52, no. 39, pp. 10378–10383, 2013. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Velkova, M. Tatarek-Nossol, E. Andreetto, and A. Kapurniotu, “Exploiting cross-amyloid interactions to inhibit protein aggregation but not function: nanomolar affinity inhibition of insulin aggregation by an IAPP mimic,” Angewandte Chemie—International Edition, vol. 47, no. 37, pp. 7114–7118, 2008. View at Publisher · View at Google Scholar · View at Scopus