Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 4370490, 7 pages
http://dx.doi.org/10.1155/2016/4370490
Research Article

Xanthine Oxidase Activity in Type 2 Diabetes Mellitus Patients with and without Diabetic Peripheral Neuropathy

1Institute of Biochemistry, Medical Faculty, University of Pristina, Kosovska Mitrovica, Serbia
2Clinics for Neurology and Psychiatry, Medical Faculty, University of Pristina, Kosovska Mitrovica, Serbia
3Clinics for General and Orthopedics Surgery, Medical Faculty, University of Pristina, Kosovska Mitrovica, Serbia
4Biochemical Laboratory, Medical Faculty, University of East Sarajevo, Foca, Bosnia And Herzegovina

Received 8 September 2016; Revised 22 October 2016; Accepted 26 October 2016

Academic Editor: Norman Cameron

Copyright © 2016 Dijana J. Miric et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Vukojević, T. Pekmezović, A. Nikolić et al., “Correlation of clinical and neurophysiological findings with health related quality of life in patients with diabetic polyneuropathy,” Vojnosanitetski Pregled, vol. 71, no. 9, pp. 833–838, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Mochizuki, H. Tanaka, K. Matsumoto et al., “Association of peripheral nerve conduction in diabetic neuropathy with subclinical left ventricular systolic dysfunction,” Cardiovascular Diabetology, vol. 14, no. 1, article 47, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Tesfaye, “Epidemiology and etiology of diabetic peripheral neuropathies,” Advanced Studies in Medicine, vol. 4, no. 10 G, pp. S1014–S1021, 2004. View at Google Scholar · View at Scopus
  4. R. Singh, L. Kishore, and N. Kaur, “Diabetic peripheral neuropathy: current perspective and future directions,” Pharmacological Research, vol. 80, pp. 21–35, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. I. G. Obrosova, J. G. Mabley, Z. Zsengellér et al., “Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst,” FASEB Journal, vol. 19, no. 3, pp. 401–403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M.-C. Desco, M. Asensi, R. Márquez et al., “Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol,” Diabetes, vol. 51, no. 4, pp. 1118–1124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. U. R. Kuppusamy, M. Indran, and P. Rokiah, “Glycaemic control in relation to xanthine oxidase and antioxidant indices in Malaysian Type 2 diabetes patients,” Diabetic Medicine, vol. 22, no. 10, pp. 1343–1346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Miric, B. B. Kisic, L. D. Zoric, R. V. Mitic, B. M. Miric, and I. M. Dragojevic, “Xanthine oxidase and lens oxidative stress markers in diabetic and senile cataract patients,” Journal of Diabetes and Its Complications, vol. 27, no. 2, pp. 171–176, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. P. Feoli, F. E. Macagnan, C. H. Piovesan, L. C. Bodanese, and I. R. Siqueira, “Xanthine Oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 587083, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. Inkster, M. A. Cotter, and N. E. Cameron, “Treatment with the xanthine oxidase inhibitor, allopurinol, improves nerve and vascular function in diabetic rats,” European Journal of Pharmacology, vol. 561, no. 1–3, pp. 63–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Papanas, N. Katsiki, K. Papatheodorou et al., “Peripheral neuropathy is associated with increased serum levels of uric acid in type 2 diabetes mellitus,” Angiology, vol. 62, no. 4, pp. 291–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Bar-Or, E. L. Lau, and J. V. Winkler, “A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—a preliminary report,” Journal of Emergency Medicine, vol. 19, no. 4, pp. 311–315, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Ukinc, S. Eminagaoglu, H. O. Ersoz et al., “A novel indicator of widespread endothelial damage and ischemia in diabetic patients: ischemia-modified albumin,” Endocrine, vol. 36, no. 3, pp. 425–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S.-G. Ma, C.-L. Wei, B. Hong, and W.-N. Yu, “Ischemia-modified albumin in type 2 diabetic patients with and without peripheral arterial disease,” Clinics, vol. 66, no. 10, pp. 1677–1680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. W. G. Meijer, A. J. Smit, E. V. Sonderen, J. W. Groothoff, W. H. Eisma, and T. P. Links, “Symptom scoring systems to diagnose distal polyneuropathy in diabetes: the diabetic neuropathy symptom score,” Diabetic Medicine, vol. 19, no. 11, pp. 962–965, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. E. L. Feldman, M. J. Stevens, P. K. Thomas, M. B. Brown, N. Canal, and D. A. Greene, “A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy,” Diabetes Care, vol. 17, no. 11, pp. 1281–1289, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. K. V. Lemley, I. Abdullah, B. D. Myers et al., “Evolution of incipient nephropathy in type 2 diabetes mellitus,” Kidney International, vol. 58, pp. 1228–1237, 2000. View at Google Scholar
  18. G. G. Roussos, “Xanthine oxidase from bovine small intestine,” Methods in Enzymology, vol. 12, pp. 5–16, 1967. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Beutler, O. Duron, and B. M. Kelly, “Improved method for the determination of blood glutathione,” The Journal of Laboratory and Clinical Medicine, vol. 61, pp. 882–888, 1963. View at Google Scholar · View at Scopus
  20. M. Kalousová, J. Škrha, and T. Zima, “Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus,” Physiological Research, vol. 51, no. 6, pp. 597–604, 2002. View at Google Scholar · View at Scopus
  21. B. Anderstam, B.-H. Ann-Christin, A. Valli, P. Stenvinkel, B. Lindholm, and M. E. Suliman, “Modification of oxidative stress biomarker AOPP assay: application in uremic samples,” Clinica Chimica Acta, vol. 393, no. 2, pp. 114–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Dobiášová and J. Frohlich, “The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL),” Clinical Biochemistry, vol. 34, no. 7, pp. 583–588, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Vincent, J. W. Russell, P. Low, and E. L. Feldman, “Oxidative stress in the pathogenesis of diabetic neuropathy,” Endocrine Reviews, vol. 25, no. 4, pp. 612–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. C. P. Oliveira, C. J. Teixeira, T. F. Stefanello et al., “Oxidative stress parameters as biomarkers of risk factor for diabetic foot among the patients with type 2 diabetes,” Brazilian Archives of Biology and Technology, vol. 57, no. 2, pp. 223–227, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Altuntas, S. S. Goksu, V. Kidir, Z. D. Aydin, and M. T. Sezer, “Uric acid levels are inversely correlated with endothelial function in type 2 diabetic patients,” International Journal of Clinical and Experimental Medicine, vol. 9, pp. 14105–14113, 2016. View at Google Scholar
  26. R. Wada and S. Yagihashi, “Role of advanced glycation end products and their receptors in development of diabetic neuropathy,” Annals of the New York Academy of Sciences, vol. 1043, pp. 598–604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Bansal, K. Gudala, H. Muthyala, H. P. Esam, R. Nayakallu, and A. Bhansali, “Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting,” Journal of Diabetes Investigation, vol. 5, no. 6, pp. 714–721, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. K. J. Cheung, I. Tzameli, P. Pissios et al., “Xanthine oxidoreductase is a regulator of adipogenesis and PPARγ activity,” Cell Metabolism, vol. 5, no. 2, pp. 115–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Tsushima, H. Nishizawa, Y. Tochino et al., “Uric acid secretion from adipose tissue and its increase in obesity,” Journal of Biological Chemistry, vol. 288, no. 38, pp. 27138–27149, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. G. H. Tesch, “Role of macrophages in complications of Type 2 diabetes,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 10, pp. 1016–1019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. N.-H. Kim, S. Choi, E.-J. Han et al., “The xanthine oxidase-NFAT5 pathway regulates macrophage activation and TLR-induced inflammatory arthritis,” European Journal of Immunology, vol. 44, no. 9, pp. 2721–2736, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ives, J. Nomura, F. Martinon et al., “Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation,” Nature Communications, vol. 6, article 6555, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. J. A. Honorat, M. Kinoshita, T. Okuno et al., “Xanthine oxidase mediates axonal and myelin loss in a murine model of multiple sclerosis,” PLoS ONE, vol. 8, no. 8, Article ID e71329, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. H. M. El-Bassossy and M. L. Watson, “Xanthine oxidase inhibition alleviates the cardiac complications of insulin resistance: effect on low grade inflammation and the angiotensin system,” Journal of Translational Medicine, vol. 13, article 82, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Butler, A. D. Morris, J. J. F. Belch, A. Hill, and A. D. Struthers, “Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension,” Hypertension, vol. 35, no. 3, pp. 746–751, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. George and A. D. Struthers, “Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress,” Vascular Health and Risk Management, vol. 5, pp. 265–272, 2009. View at Google Scholar · View at Scopus
  37. M. Connor, “Allopurinol for pain relief: more than just crystal clearance?” British Journal of Pharmacology, vol. 156, no. 1, pp. 4–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Pop-Busui, M. J. Stevens, D. M. Raffel et al., “Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomised controlled trial,” Diabetologia, vol. 56, no. 8, pp. 1835–1844, 2013. View at Publisher · View at Google Scholar · View at Scopus