Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 7932765, 10 pages
http://dx.doi.org/10.1155/2016/7932765
Research Article

miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy

Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China

Received 14 December 2015; Accepted 6 January 2016

Academic Editor: Hiroshi Okamoto

Copyright © 2016 Yijie Jia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H.-H. Parving, H. Lehnert, J. Brochner-Mortensen, R. Gomis, S. Andersen, and P. Arner, “The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 345, no. 12, pp. 870–878, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. C. E. Mogensen, C. K. Christensen, and E. Vittinghus, “The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy,” Diabetes, vol. 32, supplement 2, pp. 64–78, 1983. View at Publisher · View at Google Scholar · View at Scopus
  3. N. A. Wahab, L. Schaefer, B. S. Weston et al., “Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli,” Diabetologia, vol. 48, no. 12, pp. 2650–2660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. L. Bakris, “Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus,” Mayo Clinic Proceedings, vol. 86, no. 5, pp. 444–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. K. Kim, “Extracellular microRNAs as biomarkers in human disease,” Chonnam Medical Journal, vol. 51, no. 2, pp. 51–57, 2015. View at Publisher · View at Google Scholar
  6. B. Zhou, Z. Li, H. Yang, and N. He, “Extracellular miRNAs: origin, function and biomarkers in hepatic diseases,” Journal of Biomedical Nanotechnology, vol. 10, no. 10, pp. 2865–2890, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sun, S. Koo, N. White et al., “Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs,” Nucleic Acids Research, vol. 32, no. 22, article e188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. W. Z. Khella, M. Bakhet, G. Allo et al., “Mir-192, mir-194 and mir-215: a convergent microrna network suppressing tumor progression in renal cell carcinoma,” Carcinogenesis, vol. 34, no. 10, pp. 2231–2239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Mu, Q. Pang, Y.-H. Guo et al., “Functional implications of microrna-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1,” PLoS ONE, vol. 8, no. 3, Article ID e58622, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Q. Chen, X. X. Wang, X. M. Yao et al., “Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice,” Journal of Nephrology, vol. 25, no. 4, pp. 566–576, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Perez-Hernandez and R. Cortes, “Extracellular vesicles as biomarkers of systemic lupus erythematosus,” Disease Markers, vol. 2015, Article ID 613536, 7 pages, 2015. View at Publisher · View at Google Scholar
  12. A. Lo Cicero, P. D. Stahl, and G. Raposo, “Extracellular vesicles shuffling intercellular messages: for good or for bad,” Current Opinion in Cell Biology, vol. 35, pp. 69–77, 2015. View at Publisher · View at Google Scholar
  13. J. Qin and Q. Xu, “Functions and applications of exosomes,” Acta Poloniae Pharmaceutica—Drug Research, vol. 71, no. 4, pp. 537–543, 2014. View at Google Scholar · View at Scopus
  14. M. Salih, R. Zietse, and E. J. Hoorn, “Urinary extracellular vesicles and the kidney: biomarkers and beyond,” The American Journal of Physiology—Renal Physiology, vol. 306, no. 11, pp. F1251–F1259, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Colombo, G. Raposo, and C. Théry, “Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles,” Annual Review of Cell and Developmental Biology, vol. 30, no. 1, pp. 255–289, 2014. View at Publisher · View at Google Scholar
  16. L. Musante, D. E. Tataruch, and H. Holthofer, “Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy,” Frontiers in Endocrinology, vol. 5, article 149, 2014. View at Publisher · View at Google Scholar
  17. L. Musante, D. Tataruch, D. Gu et al., “Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy,” Journal of Diabetes Research, vol. 2015, Article ID 289734, 14 pages, 2015. View at Publisher · View at Google Scholar
  18. L.-L. Lv, Y.-H. Cao, H.-F. Ni et al., “MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis,” The American Journal of Physiology—Renal Physiology, vol. 305, no. 8, pp. F1220–F1227, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Solé, J. Cortés-Hernández, M. L. Felip, M. Vidal, and J. Ordi-Ros, “miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis,” Nephrology Dialysis Transplantation, vol. 30, no. 9, pp. 1488–1496, 2015. View at Publisher · View at Google Scholar
  20. H. W. King, M. Z. Michael, and J. M. Gleadle, “Hypoxic enhancement of exosome release by breast cancer cells,” BMC Cancer, vol. 12, article 421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L.-L. Lv, Y.-H. Cao, M.-M. Pan et al., “CD2AP mRNA in urinary exosome as biomarker of kidney disease,” Clinica Chimica Acta, vol. 428, pp. 26–31, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Eichelser, I. Stückrath, V. Müller et al., “Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients,” Oncotarget, vol. 5, no. 20, pp. 9650–9663, 2014. View at Publisher · View at Google Scholar
  24. M. Kato and R. Natarajan, “Diabetic nephropathy—emerging epigenetic mechanisms,” Nature Reviews Nephrology, vol. 10, no. 9, pp. 517–530, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Wu, L. Kong, S. Zhou et al., “The role of micrornas in diabetic nephropathy,” Journal of Diabetes Research, vol. 2014, Article ID 920134, 12 pages, 2014. View at Publisher · View at Google Scholar
  26. J. Perez-Hernandez, M. J. Forner, C. Pinto et al., “Increased urinary exosomal micrornas in patients with systemic lupus erythematosus,” PLoS ONE, vol. 10, no. 9, Article ID e0138618, 2015. View at Publisher · View at Google Scholar
  27. S. Saal and S. J. Harvey, “MicroRNAs and the kidney: coming of age,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 4, pp. 317–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Kito, K. Endo, M. Ikesue, H. Weng, and N. Iwai, “miRNA profiles of tubular cells: diagnosis of kidney injury,” BioMed Research International, vol. 2015, Article ID 465479, 9 pages, 2015. View at Publisher · View at Google Scholar
  29. H. Peng, M. Zhong, W. Zhao et al., “Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients,” PLoS ONE, vol. 8, no. 12, Article ID e82607, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Barutta, M. Tricarico, A. Corbelli et al., “Urinary exosomal MicroRNAs in incipient diabetic nephropathy,” PLoS ONE, vol. 8, no. 11, Article ID e73798, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. C. S. Neal, M. Z. Michael, L. K. Pimlott, T. Y. Yong, J. Y. Z. Li, and J. M. Gleadle, “Circulating microRNA expression is reduced in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 26, no. 11, pp. 3794–3802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Wu, L. Kong, S. Zhou et al., “The role of micrornas in diabetic nephropathy,” Journal of Diabetes Research, vol. 2014, Article ID 920134, 12 pages, 2014. View at Publisher · View at Google Scholar
  33. Y. Yang, L. Xiao, J. Li, Y. S. Kanwar, F. Liu, and L. Sun, “Urine miRNAs: potential biomarkers for monitoring progression of early stages of diabetic nephropathy,” Medical Hypotheses, vol. 81, no. 2, pp. 274–278, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Krupa, R. Jenkins, D. D. Luo, A. Lewis, A. Phillips, and D. Fraser, “Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 438–447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Hanke, K. Hoefig, H. Merz et al., “A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer,” Urologic Oncology, vol. 28, no. 6, pp. 655–661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. C. Chung and H. Y. Lan, “MicroRNAs in renal fibrosis,” Frontiers in Physiology, vol. 6, article 50, 2015. View at Publisher · View at Google Scholar
  37. S. Ibrahim and L. Rashed, “Estimation of transforming growth factor-beta 1 as a marker of renal injury in type II diabetes mellitus,” Saudi Medical Journal, vol. 28, no. 4, pp. 519–523, 2007. View at Google Scholar · View at Scopus
  38. P. Trnka, L. Ivanova, M. J. Hiatt, and D. G. Matsell, “Urinary biomarkers in obstructive nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 7, no. 10, pp. 1567–1575, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Kato, J. Zhang, M. Wang et al., “MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3432–3437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Kato, L. Arce, M. Wang, S. Putta, L. Lanting, and R. Natarajan, “A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells,” Kidney International, vol. 80, no. 4, pp. 358–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhang, S. Li, L. Li et al., “Exosome and exosomal microrna: trafficking, sorting, and function,” Genomics, Proteomics & Bioinformatics, vol. 13, no. 1, pp. 17–24, 2015. View at Publisher · View at Google Scholar
  42. B. Wang, M. Herman-Edelstein, P. Koh et al., “E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β,” Diabetes, vol. 59, no. 7, pp. 1794–1802, 2010. View at Publisher · View at Google Scholar · View at Scopus