Table of Contents Author Guidelines Submit a Manuscript
Letter to the Editor
Journal of Diabetes Research
Volume 2016, Article ID 8541520, 9 pages
http://dx.doi.org/10.1155/2016/8541520
Research Article

Puerarin Improves Diabetic Aorta Injury by Inhibiting NADPH Oxidase-Derived Oxidative Stress in STZ-Induced Diabetic Rats

1Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China
2Chengdu Chronic Diseases Hospital, Chengdu 610083, China
3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau

Received 8 September 2015; Revised 30 October 2015; Accepted 3 November 2015

Academic Editor: Hiroshi Okamoto

Copyright © 2016 Wenping Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. G. Forouhi and N. J. Wareham, “Epidemiology of diabetes,” Medicine, vol. 42, no. 12, pp. 698–702, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Liu, C. Fu, W. Wang, and B. Xu, “Prevalence of chronic complications of type 2 diabetes mellitus in outpatients—a cross-sectional hospital based survey in urban China,” Health and Quality of Life Outcomes, vol. 8, article 62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Ferrannini and R. A. DeFronzo, “Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes,” European Heart Journal, vol. 36, no. 34, pp. 2288–2296, 2015. View at Publisher · View at Google Scholar
  4. J. Xu and M.-H. Zou, “Molecular insights and therapeutic targets for diabetic endothelial dysfunction,” Circulation, vol. 120, no. 13, pp. 1266–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Kita, N. Kume, M. Minami et al., “Role of oxidized LDL in atherosclerosis,” Annals of the New York Academy of Sciences, vol. 947, pp. 199–206, 2001. View at Google Scholar · View at Scopus
  6. A. Manea, “NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology,” Cell and Tissue Research, vol. 342, no. 3, pp. 325–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Xiao, Y. Liu, and N. Wang, “New paradigms in inflammatory signaling in vascular endothelial cells,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 306, no. 3, pp. H317–H325, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. S.-Y. Wei, Y. Chen, and X.-Y. Xu, “Progress on the pharmacological research of puerarin: a review,” Chinese Journal of Natural Medicines, vol. 12, no. 6, pp. 407–414, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. Y.-X. Zhou, H. Zhang, and C. Peng, “Puerarin: a review of pharmacological effects,” Phytotherapy Research, vol. 28, no. 7, pp. 961–975, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. F.-L. Hsu, I.-M. Liu, D.-H. Kuo, W.-C. Chen, H.-C. Su, and J.-T. Cheng, “Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats,” Journal of Natural Products, vol. 66, no. 6, pp. 788–792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Kato and J. Kawabata, “Glucose uptake enhancing activity of puerarin and the role of C-glucoside suggested from activity of related compounds,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 15, pp. 4333–4336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Teng, H. Cui, M. Yang et al., “Protective effect of puerarin on diabetic retinopathy in rats,” Molecular Biology Reports, vol. 36, no. 5, pp. 1129–1133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Zhang, C.-Q. Liu, P.-W. Wang et al., “Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 398–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Li, Z. Shangguan, Y. Liu et al., “Puerarin protects pancreatic β-cell survival via PI3K/Akt signaling pathway,” Journal of Molecular Endocrinology, vol. 53, no. 1, pp. 71–79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Cheng, P. Wu, Y. Du et al., “Puerarin improves cardiac function through regulation of energy metabolism in Streptozotocin-Nicotinamide induced diabetic mice after myocardial infarction,” Biochemical and Biophysical Research Communications, vol. 463, no. 4, pp. 1108–1114, 2015. View at Publisher · View at Google Scholar
  16. S. She, W. Liu, T. Li, and Y. Hong, “Effects of puerarin in STZ-induced diabetic rats by oxidative stress and the TGF-β1/Smad2 pathway,” Food and Function, vol. 5, no. 5, pp. 944–950, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Zhong, X. Zhang, X. Cai, K. Wang, Y. Chen, and Y. Deng, “Puerarin attenuated early diabetic kidney injury through down-regulation of matrix metalloproteinase 9 in streptozotocin-induced diabetic rats,” PLoS ONE, vol. 9, no. 1, Article ID e85690, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Braga, A. Dolci, A. Mosca, and M. Panteghini, “Biological variability of glycated hemoglobin,” Clinica Chimica Acta, vol. 411, no. 21-22, pp. 1606–1610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Li, “The influence of puerarin on glycated hemoglobin, MDA, and SOD in diabetic patients,” Guangxi Medical Journal, vol. 19, p. 3, 1997. View at Google Scholar
  20. K. Wu, T. Liang, X. Duan, L. Xu, K. Zhang, and R. Li, “Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function,” Food and Chemical Toxicology, vol. 60, pp. 341–347, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. S.-J. Yang, W. Je Lee, E.-A. Kim et al., “Effects of N-adamantyl-4-methylthiazol-2-amine on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 736, pp. 26–34, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Giribabu, K. E. Kumar, S. S. Rekha et al., “Chlorophytum borivilianum (Safed Musli) root extract prevents impairment in characteristics and elevation of oxidative stress in sperm of streptozotocin-induced adult male diabetic Wistar rats,” BMC Complementary and Alternative Medicine, vol. 14, article 291, 2014. View at Publisher · View at Google Scholar
  23. C. Szabo, “Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction,” British Journal of Pharmacology, vol. 156, no. 5, pp. 713–727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Fujii, M. Soma, Y.-S. Huang, M. S. Manku, and D. F. Horrobin, “Increased release of prostaglandins from the mesenteric vascular bed of diabetic animals: the effects of glucose and insulin,” Prostaglandins, Leukotrienes and Medicine, vol. 24, no. 2-3, pp. 151–161, 1986. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Capobianco, A. Jawerbaum, V. White, C. Pustovrh, D. Sinner, and E. T. Gonzalez, “Elevated levels of endothelin-1 and prostaglandin E2 and their effect on nitric oxide generation in placental tissue from neonatal streptozotocin-induced diabetic rats,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 68, no. 3, pp. 225–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. W.-Y. Wu, H. Yan, X.-B. Wang et al., “Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of amp-activated protein kinase,” PLoS ONE, vol. 9, no. 4, Article ID e94957, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Lu, D.-X. Xiang, H.-Y. Yuan, Y. Xiao, L.-Q. Yuan, and H.-B. Li, “Puerarin attenuates calcification of vascular smooth muscle cells,” American Journal of Chinese Medicine, vol. 42, no. 2, pp. 337–347, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. L.-H. Zhu, L. Wang, D. Wang et al., “Puerarin attenuates high-glucose-and diabetes-induced vascular smooth muscle cell proliferation by blocking PKCβ2/Rac1-dependent signaling,” Free Radical Biology and Medicine, vol. 48, no. 4, pp. 471–482, 2010. View at Publisher · View at Google Scholar
  29. M. Zhu, J. Chen, H. Jiang, and C. Miao, “Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells,” Cardiovascular Diabetology, vol. 12, no. 1, article 13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Li, T. Sawamura, and G. Renier, “Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium,” Diabetes, vol. 52, no. 7, pp. 1843–1850, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiological Reviews, vol. 93, no. 1, pp. 137–188, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Gorin and K. Block, “Nox as a target for diabetic complications,” Clinical Science, vol. 125, no. 8, pp. 361–382, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Schramm, P. Matusik, G. Osmenda, and T. J. Guzik, “Targeting NADPH oxidases in vascular pharmacology,” Vascular Pharmacology, vol. 56, no. 5-6, pp. 216–231, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Kim, K. M. Kim, C.-S. Kim et al., “Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress,” Free Radical Biology and Medicine, vol. 53, no. 2, pp. 357–365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Buelna-Chontal and C. Zazueta, “Redox activation of Nrf2 & NF-κB: a double end sword?” Cellular Signalling, vol. 25, no. 12, pp. 2548–2557, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Cominacini, A. Fratta Pasini, U. Garbin et al., “Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species,” The Journal of Biological Chemistry, vol. 275, no. 17, pp. 12633–12638, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Sun and X. Chen, “Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species,” Fundamental and Clinical Pharmacology, vol. 25, no. 5, pp. 572–579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. R. B. Ning, J. Zhu, D. J. Chai et al., “RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells,” Genetics and Molecular Research, vol. 12, no. 4, pp. 6692–6707, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. G.-F. Wang, S.-Y. Wu, W. Xu et al., “Geniposide inhibits high glucose-induced cell adhesion through the NF-kappaB signaling pathway in human umbilical vein endothelial cells,” Acta Pharmacologica Sinica, vol. 31, no. 8, pp. 953–962, 2010. View at Publisher · View at Google Scholar · View at Scopus