Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 8710432, 9 pages
http://dx.doi.org/10.1155/2016/8710432
Research Article

Hyperglycemia Does Not Affect Iron Mediated Toxicity of Cultured Endothelial and Renal Tubular Epithelial Cells: Influence of L-Carnosine

1Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
2Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
3Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
4Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands

Received 8 May 2015; Revised 28 July 2015; Accepted 10 August 2015

Academic Editor: Sergiu Catrina

Copyright © 2016 Shiqi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. S. Sampaio, M. Silva, W. C. Dornas et al., “Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes,” BioMetals, vol. 27, no. 2, pp. 349–361, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Murakami, H. Okubo, and S. Sasaki, “Effect of dietary factors on incidence of type 2 diabetes: a systematic review of cohort studies,” Journal of Nutritional Science and Vitaminology, vol. 51, no. 4, pp. 292–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Ikeda, H. Enomoto, S. Tajima et al., “Dietary iron restriction inhibits progression of diabetic nephropathy in db/db mice,” The American Journal of Physiology—Renal Physiology, vol. 304, no. 7, pp. F1028–F1036, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Fernández-Real, A. López-Bermejo, and W. Ricart, “Cross-talk between iron metabolism and diabetes,” Diabetes, vol. 51, no. 8, pp. 2348–2354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Rajpathak, J. Ma, J. Manson, W. C. Willett, and F. B. Hu, “Iron intake and the risk of type 2 diabetes in women: a prospective cohort study,” Diabetes Care, vol. 29, no. 6, pp. 1370–1376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. Luan, H. Li, J. L. Sui, Z. Zhao, X. Li, and M. L. Zhong, “Body iron stores and dietary iron intake in relation to diabetes in adults in North China,” Diabetes Care, vol. 31, no. 2, pp. 285–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. F. Martines, R. Masereeuw, H. Tjalsma, J. G. Hoenderop, J. F. M. Wetzels, and D. W. Swinkels, “Iron metabolism in the pathogenesis of iron-induced kidney injury,” Nature Reviews Nephrology, vol. 9, no. 7, pp. 385–398, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. E. S. Ford and M. E. Cogswell, “Diabetes and serum ferritin concentration among U.S. adults,” Diabetes Care, vol. 22, no. 12, pp. 1978–1983, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Zein, S. Rachidi, and I. Hininger-Favier, “Is oxidative stress induced by iron status associated with gestational diabetes mellitus?” Journal of Trace Elements in Medicine and Biology, vol. 28, no. 1, pp. 65–69, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Javadian, S. Alimohamadi, M. H. Gharedaghi, and S. Hantoushzadeh, “Gestational diabetes mellitus and iron supplement; Effects on pregnancy outcome,” Acta Medica Iranica, vol. 52, no. 5, pp. 385–389, 2014. View at Google Scholar · View at Scopus
  11. A. H. Sam, M. Busbridge, A. Amin et al., “Hepcidin levels in diabetes mellitus and polycystic ovary syndrome,” Diabetic Medicine, vol. 30, no. 12, pp. 1495–1499, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Guo, F. Jiang, Y.-T. Tang, M.-Y. Si, and X.-Y. Jiao, “The association of serum vascular endothelial growth factor and ferritin in diabetic microvascular disease,” Diabetes Technology & Therapeutics, vol. 16, no. 4, pp. 224–234, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Duffy, E. S. Biegelsen, M. Holbrook et al., “Iron chelation improves endothelial function in patients with coronary artery disease,” Circulation, vol. 103, no. 23, pp. 2799–2804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kanauchi, Y. Akai, and T. Hashimoto, “Transferrinuria in type 2 diabetic patients with early nephropathy and tubulointerstitial injury,” European Journal of Internal Medicine, vol. 13, no. 3, pp. 190–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Uribarri, W. Cai, O. Sandu, M. Peppa, T. Goldberg, and H. Vlassara, “Diet-derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects,” Annals of the New York Academy of Sciences, vol. 1043, pp. 461–466, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Qian, M. Liu, and J. W. Eaton, “Transition metals bind to glycated proteins forming redox active “glycochelates”: implications for the pathogenesis of certain diabetic complications,” Biochemical and Biophysical Research Communications, vol. 250, no. 2, pp. 385–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Yoshikawa, T. Yamaguchi, N. Yoshida et al., “Effect of Z-103 on TNB-induced colitis in rats,” Digestion, vol. 58, no. 5, pp. 464–468, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Watari, S. Oka, S. Tanaka et al., “Effectiveness of polaprezinc for low-dose aspirin-induced small-bowel mucosal injuries as evaluated by capsule endoscopy: a pilot randomized controlled study,” BMC Gastroenterology, vol. 13, article 108, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Rogers, B. Davis, P. D. Neufer, M. P. Murphy, E. J. Anderson, and J. Robidoux, “A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids,” Free Radical Biology and Medicine, vol. 67, pp. 330–341, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Y. Zhang, B. Sun, M. Yang, D. Li, J. Fang, and S. Zhang, “Carnosine attenuates early brain injury through its antioxidative and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model,” Cellular and Molecular Neurobiology, vol. 35, no. 2, pp. 147–157, 2015. View at Publisher · View at Google Scholar
  21. M. Giriş, S. Doğru-Abbasoğlu, A. Kumral, V. Olgaç, N. Koçak-Toker, and M. Uysal, “Effect of carnosine alone or combined with α-tocopherol on hepatic steatosis and oxidative stress in fructose-induced insulin-resistant rats,” Journal of Physiology and Biochemistry, vol. 70, no. 2, pp. 385–395, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Riedl, F. Pfister, M. Braunagel et al., “Carnosine prevents apoptosis of glomerular cells and podocyte loss in stz diabetic rats,” Cellular Physiology and Biochemistry, vol. 28, no. 2, pp. 279–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Peters, C. P. Schmitt, J. Zschocke, M.-L. Gross, K. Brismar, and E. Forsberg, “Carnosine treatment largely prevents alterations of renal carnosine metabolism in diabetic mice,” Amino Acids, vol. 42, no. 6, pp. 2411–2416, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Sauerhöfer, G. Yuan, G. S. Braun et al., “L-carnosine, a substrate of carnosinase-1, influences glucose metabolism,” Diabetes, vol. 56, no. 10, pp. 2425–2432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Aldini, M. Orioli, G. Rossoni et al., “The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats,” Journal of Cellular and Molecular Medicine, vol. 15, no. 6, pp. 1339–1354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Torreggiani, S. Bonora, and G. Fini, “Raman and IR spectroscopic investigation of zinc(II)-carnosine complexes,” Biopolymers, vol. 57, no. 6, pp. 352–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Torreggiani, M. Tamba, and G. Fini, “Binding of copper(II) to carnosine: raman and IR spectroscopic study,” Biopolymers, vol. 57, no. 3, pp. 149–159, 2000. View at Publisher · View at Google Scholar
  28. B. C. Song, N.-S. Joo, G. Aldini, and K.-J. Yeum, “Biological functions of histidine-dipeptides and metabolic syndrome,” Nutrition Research and Practice, vol. 8, no. 1, pp. 3–10, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Stamellou, D. Storz, S. Botov et al., “Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation,” Redox Biology, vol. 2, no. 1, pp. 739–748, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Stamellou, J. Fontana, J. Wedel et al., “N-octanoyl dopamine treatment of endothelial cells induces the unfolded protein response and results in hypometabolism and tolerance to hypothermia,” PLoS ONE, vol. 9, no. 6, Article ID e99298, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Adelmann, D. Frey, E. Riedl et al., “Different conformational forms of serum carnosinase detected by a newly developed sandwich ELISA for the measurements of carnosinase concentrations,” Amino Acids, vol. 43, no. 1, pp. 143–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Teufel, V. Saudek, J. P. Ledig et al., “Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase,” The Journal of Biological Chemistry, vol. 278, no. 8, pp. 6521–6531, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Escolar, G. A. Lamas, D. B. Mark et al., “The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the Trial to Assess Chelation Therapy (TACT),” Circulation: Cardiovascular Quality and Outcomes, vol. 7, no. 1, pp. 15–24, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. K. V. Chace, R. Carubelli, and R. E. Nordquist, “The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates,” Archives of Biochemistry and Biophysics, vol. 288, no. 2, pp. 473–480, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Ou and S. P. Wolff, “Erythrocyte catalase inactivation (H2O2 production) by ascorbic acid and glucose in the presence of aminotriazole: role of transition metals and relevance to diabetes,” Biochemical Journal, vol. 303, no. 3, pp. 935–939, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. H.-O. Mowri, B. Frei, and J. F. Keaney Jr., “Glucose enhancement of LDL oxidation is strictly metal ion dependent,” Free Radical Biology and Medicine, vol. 29, no. 9, pp. 814–824, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. E. J. M. Feskens, D. Sluik, and G. J. Van Woudenbergh, “Meat consumption, diabetes, and its complications,” Current Diabetes Reports, vol. 13, no. 2, pp. 298–306, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. R. M. Van Dam, W. C. Willett, E. B. Rimm, M. J. Stampfer, and F. B. Hu, “Dietary fat and meat intake in relation to risk of type 2 diabetes in men,” Diabetes Care, vol. 25, no. 3, pp. 417–424, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. B. Hansen, I. W. Moen, and T. Mandrup-Poulsen, “Iron: the hard player in diabetes pathophysiology,” Acta Physiologica, vol. 210, no. 4, pp. 717–732, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Swaminathan, V. A. Fonseca, M. G. Alam, and S. V. Shah, “The role of iron in diabetes and its complications,” Diabetes Care, vol. 30, no. 7, pp. 1926–1933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. H. Park and J. S. Han, “Protective effect of padina arborescens extract against high glucose-induced oxidative damage in human umbilical vein endothelial cells,” Preventive Nutrition and Food Science, vol. 18, no. 1, pp. 11–17, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D. Fleming, M. A. Romano, A. S. U. Maureen, L. M. Garrick, M. D. Garrick, and N. C. Andrews, “Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 1148–1153, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. M. D. Fleming, C. C. Trenor III, M. A. Su et al., “Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene,” Nature Genetics, vol. 16, no. 4, pp. 383–386, 1997. View at Google Scholar · View at Scopus
  44. T. Yoshikawa, Y. Naito, T. Tanigawa, T. Yoneta, and M. Kondo, “The antioxidant properties of a novel zinc-carnosine chelate compound, N-(3-aminopropionyl)-l-histidinato zinc,” Biochimica et Biophysica Acta, vol. 1115, no. 1, pp. 15–22, 1991. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Velez, N. G. Nair, and V. P. Reddy, “Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants,” Colloids and Surfaces B: Biointerfaces, vol. 66, no. 2, pp. 291–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. A. Boldyrev, G. Aldini, and W. Derave, “Physiology and pathophysiology of carnosine,” Physiological Reviews, vol. 93, no. 4, pp. 1803–1845, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. L. J. Hobart, I. Seibel, G. S. Yeargans, and N. W. Seidler, “Anti-crosslinking properties of carnosine: significance of histidine,” Life Sciences, vol. 75, no. 11, pp. 1379–1389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Menini, C. Iacobini, C. Ricci et al., “D-carnosine octylester attenuates atherosclerosis and renal disease in ApoE null mice fed a Western diet through reduction of carbonyl stress and inflammation,” British Journal of Pharmacology, vol. 166, no. 4, pp. 1344–1356, 2012. View at Publisher · View at Google Scholar · View at Scopus