Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 9051426, 12 pages
http://dx.doi.org/10.1155/2016/9051426
Review Article

Experimental Diabetes Mellitus in Different Animal Models

1Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
2Department of Laboratory Science and Technology, Faculty of Health Sciences, American University of Science and Technology, Alfred Naccache Avenue, Beirut 1100, Lebanon
3Sport Science Program, Qatar University, Doha, Qatar

Received 16 May 2016; Revised 27 June 2016; Accepted 28 June 2016

Academic Editor: Hiroshi Okamoto

Copyright © 2016 Amin Al-awar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Bluestone, K. Herold, and G. Eisenbarth, “Genetics, pathogenesis and clinical interventions in type 1 diabetes,” Nature, vol. 464, no. 7293, pp. 1293–1300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Todd, “Etiology of type 1 diabetes,” Immunity, vol. 32, no. 4, pp. 457–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Hyttinen, J. Kaprio, L. Kinnunen, M. Koskenvuo, and J. Tuomilehto, “Genetic liability of type 1 diabetes and the onset age among 22, 650 young Finnish twin pairs: a nationwide follow-up study,” Diabetes, vol. 52, no. 4, pp. 1052–1055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Tao, M. Pietropaolo, M. Atkinson, D. Schatz, and D. Taylor, “Estimating the cost of type 1 diabetes in the U.S.: a propensity score matching method,” PLoS ONE, vol. 5, no. 7, Article ID e11501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ben Nasr, F. D'Addio, V. Usuelli, S. Tezza, R. Abdi, and P. Fiorina, “The rise, fall, and resurgence of immunotherapy in type 1 diabetes,” Pharmacological Research, vol. 98, pp. 31–38, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. T. P. J. Solomon, S. N. Sistrun, R. K. Krishnan et al., “Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults,” Journal of Applied Physiology, vol. 104, no. 5, pp. 1313–1319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Arndt, A. Jörns, H. Weiss et al., “A variable CD3+ T-cell frequency in peripheral blood lymphocytes associated with type 1 diabetes mellitus development in the LEW.1AR1-iddm rat,” PLoS ONE, vol. 8, no. 5, Article ID e64305, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Phillips, M. Trucco, and N. Giannoukakis, “Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same?” Clinical and Developmental Immunology, vol. 2011, Article ID 432016, 18 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. A. Calcutt, M. E. Cooper, T. S. Kern, and A. M. Schmidt, “Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials,” Nature Reviews Drug Discovery, vol. 8, no. 5, pp. 417–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kawano, S. Mori, T. Hirashima, Z.-W. Man, and T. Natori, “Examination of the pathogenesis of diabetic nephropathy in OLETF rats,” Journal of Veterinary Medical Science, vol. 61, no. 11, pp. 1219–1228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Phillips, Q. Liu, H. A. Hammond et al., “Leptin receptor missense mutation in the fatty Zucker rat,” Nature Genetics, vol. 13, no. 1, pp. 18–19, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Srinivasan and P. Ramarao, “Animal models in type 2 diabetes research: an overview,” Indian Journal of Medical Research, vol. 125, no. 3, pp. 451–472, 2007. View at Google Scholar · View at Scopus
  14. Y. Tokuyama, J. Sturis, A. M. DePaoli et al., “Evolution of β-cell dysfunction in the male Zucker diabetic fatty rat,” Diabetes, vol. 44, no. 12, pp. 1447–1457, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lee, H. Hirose, Y.-T. Zhou, V. Esser, J. D. McGarry, and R. H. Unger, “Increased lipogenic capacity of the islets of obese rats: a role in the pathogenesis of NIDDM,” Diabetes, vol. 46, no. 3, pp. 408–413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Shimabukuro, M. Higa, Y.-T. Zhou, M.-Y. Wang, C. B. Newgard, and R. H. Unger, “Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression,” The Journal of Biological Chemistry, vol. 273, no. 49, pp. 32487–32490, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Shimabukuro, Y.-T. Zhou, M. Levi, and R. H. Unger, “Fatty acid-induced β cell apoptosis: a link between obesity and diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2498–2502, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. B. Hemmes and R. Schoch, “High dosage testosterone propionate induces copulatory behavior in the obese male Zucker rat,” Physiology and Behavior, vol. 43, no. 3, pp. 321–324, 1988. View at Publisher · View at Google Scholar · View at Scopus
  19. J. B. Clark, C. J. Palmer, and W. N. Shaw, “The diabetic Zucker fatty rat,” Proceedings of the Society for Experimental Biology and Medicine, vol. 173, no. 1, pp. 68–75, 1983. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Pick, J. Clark, C. Kubstrup et al., “Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat,” Diabetes, vol. 47, no. 3, pp. 358–364, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Shibata, S. Takeuchi, S. Yokota, K. Kakimoto, F. Yonemori, and K. Wakitani, “Effects of peroxisome proliferator-activated receptor-α and -γ agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats,” British Journal of Pharmacology, vol. 130, no. 3, pp. 495–504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. J. P. Mordes, R. Bortell, E. P. Blankenhorn, A. A. Rossini, and D. L. Greiner, “Rat models of type 1 diabetes: genetics, environment, and autoimmunity,” ILAR Journal, vol. 45, no. 3, pp. 278–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Prins, L. Herberg, M. Den Bieman, and L. F. M. Van Zutphen, “Genetic variation within and between lines of diabetes-prone and non-diabetes-prone BB rats; allele distribution of 8 protein markers,” Laboratory Animals, vol. 25, no. 3, pp. 207–211, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Mathieu, B. Kuttler, M. Waer, R. Bouillon, and H. J. Hahn, “Spontaneous reestablishment of self-tolerance in BB/pfd rats,” Transplantation, vol. 58, no. 3, pp. 349–354, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Klöting, J. van den Brandt, and B. Kuttler, “Genes of SHR rats protect spontaneously diabetic BB/OK rats from diabetes: lessons from congenic BB.SHR rat strains,” Biochemical and Biophysical Research Communications, vol. 283, no. 2, pp. 399–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Kovacs, J. van den Brandt, A. C. Bonne, L. F. van Zutphen, H. A. van Lith, and I. Kloting, “Congenic BB.SHR rat provides evidence for effects of a chromosome 4 segment (D4Mit6-Npy approximately 1 cm) on total serum and lipoprotein lipid concentration and composition after feeding a high-fat, high-cholesterol diet,” Metabolism, vol. 50, no. 4, pp. 458–462, 2001. View at Google Scholar
  27. D. Schröder, M. Ratke, U. C. Bauer, I. Klöting, B. Ziegler, and S. Schmidt, “Prophylactic insulin treatment of diabetes-prone BB/OK rats by application of a sustained release insulin implant,” Autoimmunity, vol. 35, no. 2, pp. 143–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Ono, B. Issa-Chergui, E. Colle, R. D. Guttmann, T. A. Seemayer, and A. Fuks, “IDDM in BB rats. Enhanced MHC class I heavy-chain gene expression in pancreatic islets,” Diabetes, vol. 37, no. 10, pp. 1411–1418, 1988. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Hanenberg, V. Kolb-Bachofen, G. Kantwerk-Funke, and H. Kolb, “Macrophage infiltration precedes and is a prerequisite for lymphocytic insulitis in pancreatic islets of pre-diabetic BB rats,” Diabetologia, vol. 32, no. 2, pp. 126–134, 1989. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Huang, B. Hultgren, N. Dybdal, and T. A. Stewart, “Islet expression of interferon-α precedes diabetes in both the BB rat and streptozotocin-treated mice,” Immunity, vol. 1, no. 6, pp. 469–478, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. MacMurray, D. H. Moralejo, A. E. Kwitek et al., “Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene,” Genome Research, vol. 12, no. 7, pp. 1029–1039, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Krücken, R. M. U. Schroetel, I. U. Müller et al., “Comparative analysis of the human gimap gene cluster encoding a novel GTPase family,” Gene, vol. 341, no. 1-2, pp. 291–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Dyrberg, A. F. Nakhooda, S. Baekkeskov, A. Lernmark, P. Poussier, and E. B. Marliss, “Islet cell surface antibodies and lymphocyte antibodies in the spontaneously diabetic BB Wistar rat,” Diabetes, vol. 31, no. 3, pp. 278–281, 1982. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Baekkeskov, T. Dyrberg, and A. Lernmark, “Autoantibodies to a 64-kilodalton islet cell protein precede the onset of spontaneous diabetes in the BB rat,” Science, vol. 224, no. 4655, pp. 1348–1350, 1984. View at Publisher · View at Google Scholar · View at Scopus
  35. B. A. Woda, A. A. Like, C. Padden, and M. L. McFadden, “Deficiency of phenotypic cytotoxic-suppressor T lymphocytes in the BB/W rat,” The Journal of Immunology, vol. 136, no. 3, pp. 856–859, 1986. View at Google Scholar · View at Scopus
  36. E. P. van Rees, H. A. M. Voorbij, and C. D. Dijkstra, “Neonatal development of lymphoid organs and specific immune responses in situ in diabetes-prone BB rats,” Immunology, vol. 65, no. 3, pp. 465–472, 1988. View at Google Scholar · View at Scopus
  37. R. H. Wallis, K. Wang, L. Marandi et al., “Type 1 diabetes in the BB rat: a polygenic disease,” Diabetes, vol. 58, no. 4, pp. 1007–1017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Zhang, H. Kamiya, K. Ekberg, J. Wahren, and A. A. F. Sima, “C-peptide improves neuropathy in type 1 diabetic BB/Wor-rats,” Diabetes/Metabolism Research and Reviews, vol. 23, no. 1, pp. 63–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M.-L. Hartoft-Nielsen, A. K. Rasmussen, T. Bock, U. Feldt-Rasmussen, A. Kaas, and K. Buschard, “Iodine and tri-iodo-thyronine reduce the incidence of type 1 diabetes mellitus in the autoimmune prone BB rats,” Autoimmunity, vol. 42, no. 2, pp. 131–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Holmberg, E. Refai, A. Höög et al., “Lowering apolipoprotein CIII delays onset of type 1 diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 26, pp. 10685–10689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Kolb, U. Wörz-Pagenstert, R. Kleemann, H. Rothe, P. Rowsell, and F. W. Scott, “Cytokine gene expression in the BB rat pancreas: natural course and impact of bacterial vaccines,” Diabetologia, vol. 39, no. 12, pp. 1448–1454, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Zipris, D. L. Greiner, S. Malkani, B. Whalen, J. P. Mordes, and A. A. Rossini, “Cytokine gene expression in islets and thyroids of BB rats. IFN-gamma and IL-12p40 mRNA increase with age in both diabetic and insulin-treated nondiabetic BB rats,” The Journal of Immunology, vol. 156, no. 3, pp. 1315–1321, 1996. View at Google Scholar · View at Scopus
  43. R. Jackson, N. Rassi, T. Crump, B. Haynes, and G. S. Eisenbarth, “The BB diabetic rat. Profound T-cell lymphocytopenia,” Diabetes, vol. 30, no. 10, pp. 887–889, 1981. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Elder and N. K. Maclaren, “Identification of profound peripheral T lymphocyte immunodeficiencies in the spontaneously diabetic BB rat,” Journal of Immunology, vol. 130, no. 4, pp. 1723–1731, 1983. View at Google Scholar · View at Scopus
  45. J.-F. Yale, M. Grose, and E. B. Marliss, “Time course of the lymphopenia in BB rats. Relation to the onset of diabetes,” Diabetes, vol. 34, no. 10, pp. 955–959, 1985. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Bortell, T. Kanaitsuka, L. A. Stevens et al., “The RT6 (Art2) family of ADP-ribosyltransferases in rat and mouse,” Molecular and Cellular Biochemistry, vol. 193, no. 1-2, pp. 61–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Burstein, J. P. Mordes, D. L. Greiner et al., “Prevention of diabetes in BB/Wor rat by single transfusion of spleen cells. Parameters that affect degree of protection,” Diabetes, vol. 38, no. 1, pp. 24–30, 1989. View at Google Scholar · View at Scopus
  48. W. E. Dugoni and S. T. Bartlett, “Evidence that cyclosporine prevents rejection and recurrent diabetes in pancreatic transplants in the BB rat,” Transplantation, vol. 49, no. 5, pp. 845–848, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. K. L. Kover, Z. Geng, D. M. Hess, C. D. Benjamin, and W. V. Moore, “Anti-CD154 (CD40L) prevents recurrence of diabetes in islet isografts in the DR-BB rat,” Diabetes, vol. 49, no. 10, pp. 1666–1670, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Lenzen, M. Tiedge, M. Elsner et al., “The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus,” Diabetologia, vol. 44, no. 9, pp. 1189–1196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Jörns, A. Günther, H.-J. Hedrich, D. Wedekind, M. Tiedge, and S. Lenzen, “Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat,” Diabetes, vol. 54, no. 7, pp. 2041–2052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Arndt, A. Jörns, H.-J. Hedrich, S. Lenzen, and D. Wedekind, “Variable immune cell frequencies in peripheral blood of LEW.1AR1-iddm rats over time compared to other congenic LEW strains,” Clinical and Experimental Immunology, vol. 177, no. 1, pp. 168–178, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. C. E. Mathews, “Utility of murine models for the study of spontaneous autoimmune type 1 diabetes,” Pediatric Diabetes, vol. 6, no. 3, pp. 165–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Weiss, A. Bleich, H.-J. Hedrich et al., “Genetic analysis of the LEW.1AR1-iddm rat: an animal model for spontaneous diabetes mellitus,” Mammalian Genome, vol. 16, no. 6, pp. 432–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. K. E. Ellerman and A. A. Like, “Susceptibility to diabetes is widely distributed in normal class II(u) haplotype rats,” Diabetologia, vol. 43, no. 7, pp. 890–898, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Wedekind, H. Weiss, A. Jörns, S. Lenzen, M. Tiedge, and H.-J. Hedrich, “Effects of polyinosinic-polycytidylic acid and adoptive transfer of immune cells in the LEW.1AR1-iddm rat and in its coisogenic LEW.1AR1 background strain,” Autoimmunity, vol. 38, no. 4, pp. 265–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Weiss, T. Arndt, A. Jörns et al., “The mutation of the LEW.1AR1-iddm rat maps to the telomeric end of rat chromosome 1,” Mammalian Genome, vol. 19, no. 4, pp. 292–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J.-F. Côté and K. Vuori, “GEF what? Dock180 and related proteins help Rac to polarize cells in new ways,” Trends in Cell Biology, vol. 17, no. 8, pp. 383–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. H. C. Su, “Dedicator of cytokinesis 8 (DOCK8) deficiency,” Current Opinion in Allergy and Clinical Immunology, vol. 10, no. 6, pp. 515–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Arndt, D. Wedekind, A. Jörns et al., “A novel Dock8 gene mutation confers diabetogenic susceptibility in the LEW.1AR1/Ztm-iddm rat, an animal model of human type 1 diabetes,” Diabetologia, vol. 58, no. 12, pp. 2800–2809, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. J. B. Matthews, T. P. Staeva, P. L. Bernstein, M. Peakman, and M. Von Herrath, “Developing combination immunotherapies for type 1 diabetes: Recommendations from the ITN-JDRF Type 1 Diabetes Combination Therapy Assessment Group,” Clinical and Experimental Immunology, vol. 160, no. 2, pp. 176–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Jörns, T. Arndt, A. M. Zu Vilsendorf et al., “Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW.1AR1-iddm rat and humans with type 1 diabetes,” Diabetologia, vol. 57, no. 3, pp. 512–521, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. Yang, M. Chen, L. B. Fialkow et al., “The immune modulator FYT720 prevents autoimmune diabetes in nonobese diabetic mice,” Clinical Immunology, vol. 107, no. 1, pp. 30–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Maki, R. Gottschalk, N. Ogawa, and A. P. Monaco, “Prevention and cure of autoimmune diabetes in nonobese diabetic mice by continuous administration of FTY720,” Transplantation, vol. 79, no. 9, pp. 1051–1055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Jörns, K. J. Rath, T. Terbish et al., “Diabetes prevention by immunomodulatory FTY720 treatment in the LEW.1AR1-iddm rat despite immune cell activation,” Endocrinology, vol. 151, no. 8, pp. 3555–3565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Goto, M. Kakizaki, and N. Masaki, “Spontaneous diabetes produced by selective breeding of normal wistar rats,” Proceedings of the Japan Academy, vol. 51, no. 1, pp. 80–85, 1975. View at Google Scholar
  67. B. Portha, M.-H. Giroix, P. Serradas et al., “β-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony,” Diabetes, vol. 50, supplement 1, pp. S89–S93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. C.-G. Östenson and S. Efendic, “Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans,” Diabetes, Obesity and Metabolism, vol. 9, supplement 2, pp. 180–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Movassat, C. Saulnier, P. Serradas, and B. Portha, “Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat,” Diabetologia, vol. 40, no. 8, pp. 916–925, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. M.-H. Giroix, C. Saulnier, and B. Portha, “Decreased pancreatic islet response to L-leucine in the spontaneously diabetic GK rat: enzymatic, metabolic and secretory data,” Diabetologia, vol. 42, no. 8, pp. 965–977, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Picarel-Blanchot, C. Berthelier, D. Bailbé, and B. Portha, “Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat,” American Journal of Physiology—Endocrinology and Metabolism, vol. 271, no. 4, part 1, pp. E755–E762, 1996. View at Google Scholar · View at Scopus
  72. K. Kupai, R. Szabó, M. Veszelka et al., “Consequences of exercising on ischemia-reperfusion injury in type 2 diabetic Goto-Kakizaki rat hearts: role of the HO/NOS system,” Diabetology and Metabolic Syndrome, vol. 7, article 85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Lenzen, “The mechanisms of alloxan- and streptozotocin-induced diabetes,” Diabetologia, vol. 51, no. 2, pp. 216–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. C.-H. Moon, Y.-S. Jung, S. H. Lee, and E. J. Baik, “Protein kinase C inhibitors abolish the increased resistance of diabetic rat heart to ischemia-reperfusion injury,” Japanese Journal of Physiology, vol. 49, no. 5, pp. 409–415, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Chen, W.-L. Shen, X.-H. Wang et al., “Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 10, pp. 910–916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Ravingerová, J. Matejíková, D. Pancza, and F. Kolář, “Reduced susceptibility to ischemia-induced arrhythmias in the preconditioned rat heart is independent of PI3-Kinase/Akt,” Physiological Research, vol. 58, no. 3, pp. 443–447, 2009. View at Google Scholar · View at Scopus
  77. E. Gurel, S. Ustunova, A. Kapucu et al., “Hexokinase cellular trafficking in ischemia-reperfusion and ischemic preconditioning is altered in type I diabetic heart,” Molecular Biology Reports, vol. 40, no. 7, pp. 4153–4160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. H. S. Kim, J. E. Cho, K. C. Hwang, Y. H. Shim, J. H. Lee, and Y. L. Kwak, “Diabetes mellitus mitigates cardioprotective effects of remifentanil preconditioning in ischemia-reperfused rat heart in association with anti-apoptotic pathways of survival,” European Journal of Pharmacology, vol. 628, no. 1–3, pp. 132–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. N. Yadav, M. Singh, and P. L. Sharma, “Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart,” Molecular and Cellular Biochemistry, vol. 343, no. 1-2, pp. 75–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Ajmani, H. N. Yadav, M. Singh, and P. L. Sharma, “Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart,” BMC Cardiovascular Disorders, vol. 11, article 43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Ji, X. Zhang, W. Liu et al., “AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury,” PLoS ONE, vol. 8, no. 7, Article ID e69910, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Vinokur, E. Berenshtein, B. Bulvik, L. Grinberg, R. Eliashar, and M. Chevion, “The bitter fate of the sweet heart: impairment of iron homeostasis in diabetic heart leads to failure in myocardial protection by preconditioning,” PLoS ONE, vol. 8, no. 5, Article ID e62948, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Tosaki, D. T. Engelman, R. M. Engelman, and D. K. Das, “The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts,” Cardiovascular Research, vol. 31, no. 4, pp. 526–536, 1996. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Thirunavukkarasu, S. V. Penumathsa, S. Koneru et al., “Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase,” Free Radical Biology and Medicine, vol. 43, no. 5, pp. 720–729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Wu, Z.-Y. Xia, J. Dou et al., “Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats,” Molecular Biology Reports, vol. 38, no. 7, pp. 4327–4335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. N. K. Sharma, N. Mahadevan, and P. Balakumar, “Adenosine transport blockade restores attenuated cardioprotective effects of adenosine preconditioning in the isolated diabetic rat heart: potential crosstalk with opioid receptors,” Cardiovascular Toxicology, vol. 13, no. 1, pp. 22–32, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. X.-H. Zhu, H.-J. Yuan, Y.-N. Wu et al., “Non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats,” Free Radical Research, vol. 45, no. 2, pp. 201–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. J.-Y. Ren, J.-X. Song, M.-Y. Lu, and H. Chen, “Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P,” Regulatory Peptides, vol. 169, no. 1–3, pp. 49–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. W. Tai, E. Shi, L. Yan, X. Jiang, H. Ma, and C. Ai, “Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo: roles of glycogen synthase kinase-3β and its upstream pathways,” Journal of Surgical Research, vol. 178, no. 1, pp. 96–104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Najafi, S. Farajnia, M. Mohammadi et al., “Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts,” Journal of Diabetes & Metabolic Disorders, vol. 13, , article 106, 2014. View at Publisher · View at Google Scholar
  91. M. Sárközy, V. Fekete, G. Szucs et al., “Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: a gender difference,” BMC Endocrine Disorders, vol. 14, article 72, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Liu, J. D. Thornton, M. V. Cohen, J. M. Downey, and S. W. Schaffer, “Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction,” Circulation, vol. 88, no. 3, pp. 1273–1278, 1993. View at Publisher · View at Google Scholar · View at Scopus
  93. E. Kravchuk, E. Grineva, A. Bairamov, M. Galagudza, and T. Vlasov, “The effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus type II,” Experimental Diabetes Research, vol. 2011, Article ID 907496, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. M. M. Galagudza, M. K. Nekrasova, A. V. Syrenskii, and E. M. Nifontov, “Resistance of the myocardium to ischemia and the efficacy of ischemic preconditioning in experimental diabetes mellitus,” Neuroscience and Behavioral Physiology, vol. 37, no. 5, pp. 489–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Ebel, J. Müllenheim, J. Fräßdorf et al., “Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo,” Pflugers Archiv European Journal of Physiology, vol. 446, no. 2, pp. 175–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Hirose, Y. M. Tsutsumi, R. Tsutsumi et al., “Role of the o-linked β-N-acetylglucosamine in the cardioprotection induced by isoflurane,” Anesthesiology, vol. 115, no. 5, pp. 955–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. F. A. Babiker, J. van Golde, W. Y. Vanagt, and F. W. Prinzen, “Pacing postconditioning: impact of pacing algorithm, gender, and diabetes on its myocardial protective effects,” Journal of Cardiovascular Translational Research, vol. 5, no. 5, pp. 727–734, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Hanafusa, J.-I. Miyagawa, H. Nakajima et al., “The NOD mouse,” Diabetes Research and Clinical Practice, vol. 24, pp. S307–S311, 1994. View at Publisher · View at Google Scholar · View at Scopus
  99. J.-W. Yoon and H.-S. Jun, “Viruses in type 1 diabetes: brief review,” ILAR Journal, vol. 45, no. 3, pp. 343–348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Miyazaki, T. Hanafusa, K. Yamada et al., “Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study,” Clinical and Experimental Immunology, vol. 60, no. 3, pp. 622–630, 1985. View at Google Scholar · View at Scopus
  101. J. A. Pearson, F. S. Wong, and L. Wen, “The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes,” Journal of Autoimmunity, vol. 66, pp. 76–88, 2016. View at Publisher · View at Google Scholar · View at Scopus
  102. D. P. Singal and M. A. Blajchman, “Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus,” Diabetes, vol. 22, no. 6, pp. 429–432, 1973. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Nerup, P. Platz, O. O. Andersen et al., “HL-A antigens and diabetes mellitus,” The Lancet, vol. 304, no. 7885, pp. 864–866, 1974. View at Publisher · View at Google Scholar · View at Scopus
  104. J. A. Noble and H. A. Erlich, “Genetics of type 1 diabetes,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 1, Article ID a007732, 2012. View at Google Scholar · View at Scopus
  105. A. Jansen, F. Homo-Delarche, H. Hooijkaas, P. J. Leenen, M. Dardenne, and H. A. Drexhage, “Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and β-cell destruction in NOD mice,” Diabetes, vol. 43, no. 5, pp. 667–675, 1994. View at Publisher · View at Google Scholar · View at Scopus
  106. G. Bouma, J. M. C. Coppens, S. Mourits et al., “Evidence for an enhanced adhesion of DC to fibronectin and a role of CCL19 and CCL21 in the accumulation of DC around the pre-diabetic islets in NOD mice,” European Journal of Immunology, vol. 35, no. 8, pp. 2386–2396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Diana, Y. Simoni, L. Furio et al., “Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes,” Nature Medicine, vol. 19, no. 1, pp. 65–73, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Willcox, S. J. Richardson, A. J. Bone, A. K. Foulis, and N. G. Morgan, “Analysis of islet inflammation in human type 1 diabetes,” Clinical and Experimental Immunology, vol. 155, no. 2, pp. 173–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. J. A. Todd and L. S. Wicker, “Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models,” Immunity, vol. 15, no. 3, pp. 387–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Yang and P. Santamaria, “Lessons on autoimmune diabetes from animal models,” Clinical Science, vol. 110, no. 6, pp. 627–639, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. M. von Herrath, C. Filippi, and K. Coppieters, “How viral infections enhance or prevent type 1 diabetes-from mouse to man,” Journal of Medical Virology, vol. 83, no. 9, p. 1672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. M. von Herrath and G. T. Nepom, “Animal models of human type 1 diabetes,” Nature Immunology, vol. 10, no. 2, pp. 129–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. S. W. Christianson, L. D. Shultz, and E. H. Leiter, “Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice: relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors,” Diabetes, vol. 42, no. 1, pp. 44–55, 1993. View at Publisher · View at Google Scholar · View at Scopus
  114. C. E. Mathews, S. H. Langley, and E. H. Leiter, “New mouse model to study islet transplantation in insulin-dependent diabetes mellitus,” Transplantation, vol. 73, no. 8, pp. 1333–1336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. V. R. Drel, P. Pacher, R. Stavniichuk et al., “Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice,” International Journal of Molecular Medicine, vol. 28, no. 4, pp. 629–635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Zhou, B. Pridgen, N. King, J. Xu, and J. L. Breslow, “Hyperglycemic Ins2AkitaLdlr-/- mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease,” Journal of Lipid Research, vol. 52, no. 8, pp. 1483–1493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Chen, C. Zheng, X. Zhang et al., “Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice,” Peptides, vol. 32, no. 8, pp. 1634–1639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. N. Sonenberg and C. B. Newgard, “Protein synthesis. The perks of balancing glucose,” Science, vol. 293, no. 5531, pp. 818–819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. M. D. Breyer, E. Böttinger, F. C. Brosius III et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 27–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. S. B. Gurley, C. L. Mach, J. Stegbauer et al., “Influence of genetic background on albuminuria and kidney injury in Ins2+/C96Y(Akita) mice,” American Journal of Physiology, vol. 298, no. 3, pp. F788–F795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Wang, T. Takeuchi, S. Tanaka et al., “A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse,” Journal of Clinical Investigation, vol. 103, no. 1, pp. 27–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Leroux, P. Desbois, L. Lamotte et al., “Compensatory responses in mice carrying a null mutation for Ins1 or Ins2,” Diabetes, vol. 50, supplement 1, pp. S150–S153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Oyadomari, A. Koizumi, K. Takeda et al., “Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes,” The Journal of Clinical Investigation, vol. 109, no. 4, pp. 525–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. N. H. Bishop, K. S. Beard, and R. G. Gill, “Resistance of spontaneously diabetic Ins2akita mice to allograft tolerance induced by anti-CD154 therapy,” Transplantation Proceedings, vol. 46, no. 6, pp. 2007–2009, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. R. E. Schmidt, K. G. Green, L. L. Snipes, and D. Feng, “Neuritic dystrophy and neuronopathy in Akita (Ins2Akita) diabetic mouse sympathetic ganglia,” Experimental Neurology, vol. 216, no. 1, pp. 207–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. S. B. Gurley, S. E. Clare, K. P. Snow, A. Hu, T. W. Meyer, and T. M. Coffman, “Impact of genetic background on nephropathy in diabetic mice,” American Journal of Physiology—Renal Physiology, vol. 290, no. 1, pp. F214–F222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. M. S. Islam, “Animal models of diabetic neuropathy: progress since 1960s,” Journal of Diabetes Research, vol. 2013, Article ID 149452, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Haseyama, T. Fujita, F. Hirasawa et al., “Complications of IgA nephropathy in a non-insulin-dependent diabetes model, the Akita mouse,” Tohoku Journal of Experimental Medicine, vol. 198, no. 4, pp. 233–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. C. E. Alpers and K. L. Hudkins, “Mouse models of diabetic nephropathy,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 3, pp. 278–284, 2011. View at Publisher · View at Google Scholar · View at Scopus