Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2017, Article ID 2379432, 2 pages
https://doi.org/10.1155/2017/2379432
Editorial

Diabetic Nephropathy: From Pathophysiology to Treatment

1Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
2Shanghai Institute of Kidney and Dialysis, Shanghai, China
3Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
4Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Correspondence should be addressed to Yi Fang; nc.hs.latipsoh-sz@iy.gnaf and Feng Wang; moc.361@0301qwzyz

Received 9 July 2017; Accepted 9 July 2017; Published 23 October 2017

Copyright © 2017 Ziyan Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Zhang, J. Long, W. Jiang et al., “Trends in chronic kidney disease in China,” The New England Journal of Medicine, vol. 375, no. 9, pp. 905-906, 2016. View at Publisher · View at Google Scholar
  2. M. C. Thomas, P. H. Groop, and K. Tryggvason, “Towards understanding the inherited susceptibility for nephropathy in diabetes,” Current Opinion in Nephrology and Hypertension, vol. 21, no. 2, pp. 195–202, 2012. View at Publisher · View at Google Scholar
  3. M. C. Thomas, M. Brownlee, K. Susztak et al., “Diabetic kidney disease,” Nature Reviews Disease Primers, vol. 1, article 15018, 2015. View at Publisher · View at Google Scholar
  4. I. Vardarli, L. J. Baier, R. L. Hanson et al., “Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23,” Kidney International, vol. 62, no. 6, pp. 2176–2183, 2002. View at Publisher · View at Google Scholar
  5. C. W. McDonough, P. J. Hicks, L. Lu, C. D. Langefeld, B. I. Freedman, and D. W. Bowden, “The influence of carnosinase gene polymorphisms on diabetic nephropathy risk in African-Americans,” Human Genetics, vol. 126, no. 2, pp. 265–275, 2009. View at Publisher · View at Google Scholar
  6. T. S. Ahluwalia, E. Lindholm, and L. C. Groop, “Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes,” Diabetologia, vol. 54, no. 9, pp. 2295–2302, 2011. View at Publisher · View at Google Scholar
  7. T. Dayeh, P. Volkov, S. Salö et al., “Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion,” PLoS Genetics, vol. 10, no. 3, article e1004160, 2014. View at Publisher · View at Google Scholar
  8. M. D. Nitert, T. Dayeh, P. Volkov et al., “Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes,” Diabetes, vol. 61, no. 12, pp. 3322–3332, 2012. View at Publisher · View at Google Scholar
  9. E. Nilsson, P. A. Jansson, A. Perfilyev et al., “Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes,” Diabetes, vol. 63, no. 9, pp. 2962–2976, 2014. View at Publisher · View at Google Scholar
  10. B. A. Perkins, L. H. Ficociello, K. H. Silva, D. M. Finkelstein, J. H. Warram, and A. S. Krolewski, “Regression of microalbuminuria in type 1 diabetes,” The New England Journal of Medicine, vol. 348, no. 23, pp. 2285–2293, 2003. View at Publisher · View at Google Scholar