Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013, Article ID 593534, 8 pages
http://dx.doi.org/10.1155/2013/593534
Research Article

Mechanistic Study of Adsorption of Acid Orange-7 over Aluminum Oxide Nanoparticles

1Department of Chemistry, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab 144021, India
2Department of Food Sciences & Technology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
3Krantiguru Shyamji Krishna Verma Kachchh University, Mundra Road, Bhuj, Gujarat 370001, India

Received 24 November 2012; Accepted 5 December 2012

Academic Editor: Jose M. Guisan

Copyright © 2013 Ekta Khosla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Chatterjee, B. Raj, and A. Mahata, “Adsorption and photocatalytic color removal using flyash and sunlight,” Catalysis Communications, vol. 2, pp. 113–117, 2001. View at Google Scholar
  2. Y. M. Slokar and A. Majcen Le Marechal, “Methods of decoloration of textile wastewaters,” Dyes and Pigments, vol. 37, no. 4, pp. 335–356, 1998. View at Publisher · View at Google Scholar
  3. P. R. Gogate and A. B. Pandit, “A review of imperative technologies for waste water treatment technologies for waste water treatment II: hybrid methods,” Advances in Environmental Research, vol. 8, pp. 501–551, 2004. View at Publisher · View at Google Scholar
  4. N. H. Ince and G. Tezcanlí, “Reactive dyestuff degradation by combined sonolysis and ozonation,” Dyes and Pigments, vol. 49, no. 3, pp. 145–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Lorimer, T. J. Mason, M. Plattesand, and S. S. Phull, “Dye effluent decolorization using ultrasonically assisted electro-oxidation,” Ultrasonics Sonochemistry, vol. 7, pp. 237–242, 2000. View at Google Scholar
  6. X. Quan, X. Liu, L. Bo, S. Chen, Y. Zhao, and X. Cui, “Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation,” Water Research, vol. 38, no. 20, pp. 4484–4490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Robinson, G. McMullan, R. Marchant, and P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,” Bioresource Technology, vol. 77, no. 3, pp. 247–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. N. Dave, S. Kaur, and E. Khosla, “Removal of Eriochrome black-T by adsorption on to eucalyptus bark using green technology,” Indian Journal of Chemical Technology, vol. 18, no. 1, pp. 53–60, 2011. View at Google Scholar · View at Scopus
  9. P. N. Dave, S. Kaur, and E. Khosla, “Removal of basic dye from aqueous solution by biosorption on to sewage sludge,” Indian Journal of Chemical Technology, vol. 18, no. 3, pp. 220–226, 2011. View at Google Scholar · View at Scopus
  10. E. Khosla, S. Kaur, and P. N. Dave, “Surfactant modified tea waste as novel adsorbent for basic dye,” Der Chemica Sinica, vol. 2, no. 5, pp. 87–102, 2012. View at Google Scholar
  11. E. Khosla, S. Kaur, and P. N. Dave, “Adsorption mechanism of basic red 12 over Eucalyptus bark and its surface derivatives,” Journal of Chemical & Engineering Data, vol. 57, no. 7, pp. 2004–2011, 2012. View at Google Scholar
  12. V. K. Gupta, A. Mittal, L. Krishnan, and V. Gajbe, “Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash,” Separation and Purification Technology, vol. 40, no. 1, pp. 87–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Karcher, A. Kornmüller, and M. Jekel, “Screening of commercial sorbents for the removal of reactive dyes,” Dyes and Pigments, vol. 51, no. 2-3, pp. 111–125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Chen, W. Chen, and D. Zhu, “Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry,” Environmental Science and Technology, vol. 42, no. 19, pp. 7225–7230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Khaled, P. N. Kapoor, and K. J. Klabunde, “Nanocrystalline metal oxides as new adsorbents for air purification,” Nanostructured Materials, vol. 11, pp. 459–468, 1999. View at Publisher · View at Google Scholar
  16. K. Hristovski, A. Baumgardner, and P. Westerhoff, “Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media,” Journal of Hazardous Materials, vol. 147, no. 1-2, pp. 265–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Sharma, V. Srivastava, and A. K. Mukherjee, “Synthesis and application of nano-Al2O3 powder for the reclamation of hexavalent chromium from aqueous solutions,” Journal of Chemical and Engineering Data, vol. 55, no. 7, pp. 2390–2398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Hu, I. M. C. Lo, and G. Chen, “Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles,” Langmuir, vol. 21, no. 24, pp. 11173–11179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. C. Sharma, V. Srivastava, S. N. Upadhay, and C. H. Weng, “Alumina nanoparticles for the removal of Ni (II) from aqueous solutions,” Industrial & Engineering Chemistry Research, vol. 47, pp. 8095–8100, 2008. View at Publisher · View at Google Scholar
  20. V. K. Gupta, A. Mittal, V. Gajbe, and J. Mittal, “Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya,” Industrial and Engineering Chemistry Research, vol. 45, no. 4, pp. 1446–1453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Srivastava, C. H. Weng, V. K. Singh, and Y. C. Sharma, “Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies,” Journal of Chemical & Engineering Data, vol. 56, pp. 1414–1422, 2011. View at Publisher · View at Google Scholar
  22. W. T. Tsai, Y. M. Chang, C. W. Lai, and C. C. Lo, “Adsorption of ethyl violet dyes in aqueous solution by regenerated spent bleaching earth,” Journal of Colloid and Interface Science, vol. 289, pp. 322–333, 2005. View at Google Scholar
  23. A. Vázquez, T. López, R. Gómez, Bokhimi, A. Morales, and O. Novaro, “X-ray diffraction, FTIR, and NMR characterization of Sol-Gel alumina doped with lanthanum and cerium,” Journal of Solid State Chemistry, vol. 128, no. 2, pp. 161–168, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. V. K. Gupta, I. Ali, Suhas, and D. Mohan, “Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents,” Journal of Colloid and Interface Science, vol. 265, no. 2, pp. 257–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Kumar, S. Kumar, S. Kumar, and D. V. Gupta, “Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: equilibrium and kinetics,” Journal of Hazardous Materials, vol. 147, no. 1-2, pp. 155–166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. V. Rodrigo and M. M. Beppu, “Dynamic and static adsorption and desorption of Hg (II) ionson chitosan membranes and spheres,” Water Research, vol. 40, pp. 1726–1734, 2006. View at Publisher · View at Google Scholar
  27. O. Genç, L. Soysal, G. Bayramoğlu, M. Y. Arica, and S. Bektaş, “Procion green H-4G immobilizedpoly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal,” Journal of Hazardous Materials, vol. B97, pp. 111–125, 2003. View at Google Scholar
  28. G. Z. Kyzas and N. K. Lazaridis, “Reactive and basic dyes removal by sorption onto chitosan derivatives,” Journal of Colloid and Interface Science, vol. 331, no. 1, pp. 32–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. W. Won and Y. S. Yun, “Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process,” Dyes and Pigments, vol. 76, no. 2, pp. 502–507, 2008. View at Publisher · View at Google Scholar · View at Scopus