Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2013, Article ID 785126, 26 pages
http://dx.doi.org/10.1155/2013/785126
Research Article

A Very Compact AES-SPIHT Selective Encryption Computer Architecture Design with Improved S-Box

1Department of Electrical and Electronic Engineering, University of Nottingham, Malaysia Campus, 43500 Semenyih, Malaysia
2School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

Received 31 August 2012; Revised 5 June 2013; Accepted 5 June 2013

Academic Editor: Alfio D. Grasso

Copyright © 2013 Jia Hao Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The “S-box” algorithm is a key component in the Advanced Encryption Standard (AES) due to its nonlinear property. Various implementation approaches have been researched and discussed meeting stringent application goals (such as low power, high throughput, low area), but the ultimate goal for many researchers is to find a compact and small hardware footprint for the S-box circuit. In this paper, we present our version of minimized S-box with two separate proposals and improvements in the overall gate count. The compact S-box is adopted with a compact and optimum processor architecture specifically tailored for the AES, namely, the compact instruction set architecture (CISA). To further justify and strengthen the purpose of the compact crypto-processor’s application, we have also presented a selective encryption architecture (SEA) which incorporates the CISA as a part of the encryption core, accompanied by the set partitioning in hierarchical trees (SPIHT) algorithm as a complete selective encryption system.