Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2017, Article ID 4723017, 16 pages
https://doi.org/10.1155/2017/4723017
Research Article

Elastoplastic Modelling of an In Situ Concrete Spalling Experiment Using the Ottosen Failure Criterion

Aalto University, Rakentajanaukio 4 A, 02150 Espoo, Finland

Correspondence should be addressed to Lauri Kalle Tapio Uotinen; if.otlaa@nenitou.irual

Received 3 November 2016; Revised 26 December 2016; Accepted 27 December 2016; Published 31 January 2017

Academic Editor: İlker Bekir Topçu

Copyright © 2017 Lauri Kalle Tapio Uotinen and Topias Kalle Aleksi Siren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. SKBF/KBS. KBS 3—Final storage of spent nuclear fuel—KBS-3, I general, Art716-1, 1983, http://www.skb.com/publication/4397/.
  2. J. C. Andersson, “Äspö Hard Rock Laboratory. Äspö pillar stability experiment, final report. Rock mass response to coupled mechanical thermal loading,” SKB Technical Report TR-07-01, Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden, 2007, http://www.skb.com/publication/1353659/TR-07-01.pdf. View at Google Scholar
  3. J. Valli, M. Hakala, T. Wanne, P. Kantia, and T. Siren, “ONKALO POSE experiment—phase 3: execution and monitoring,” Working Report 2013-41, Posiva, Eurajoki, Finland, 2014, http://www.posiva.fi/files/3646/WR_2013-41.2.pdf. View at Google Scholar
  4. L. Uotinen, T. Siren, D. Martinelli, and M. Hakala, “In-situ experiment concerning thermally induced spalling of circular shotcreted shafts in deep crystalline rock,” in Proceedings of the World Tunnel Congress (WTC '13), Geneva, Switzerland, May 2013, https://research.aalto.fi/files/10378012/WTC2013_full_paper_v15.pdf. View at Publisher · View at Google Scholar
  5. T. Siren, L. Uotinen, M. Rinne, and B. Shen, “Fracture mechanics modelling of an in situ concrete spalling experiment,” Rock Mechanics and Rock Engineering, vol. 48, no. 4, pp. 1423–1438, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Glamheden, B. Fälth, L. Jacobsson, J. Harrström, J. Berglund, and L. Bergkvist, “Counterforce applied to prevent spalling,” SKB Technical Report TR-10-37, Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden, 2010, http://www.skb.se/upload/publications/pdf/TR-10-37.pdf. View at Google Scholar
  7. E. Johansson, T. Siren, M. Hakala, and P. Kantia, “ONKALO POSE experiment—phase 1 & 2: execution and monitoring,” Working Report 2012-60, Posiva, Eurajoki, Finland, 2014, http://www.posiva.fi/files/3641/WR_2012-60.pdf. View at Google Scholar
  8. B. Shen, O. Stephansson, and M. Rinne, Modelling Rock Fracturing Processes: A Fracture Mechanics Approach Using FRACOD, Springer, Berlin, Germany, 2014.
  9. B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Engineering Fracture Mechanics, vol. 47, no. 2, pp. 177–189, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Mohr, “Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials,” Zeitschrift des Vereins Deutscher Ingenieure, vol. 46, no. 1524–1530, pp. 1572–1577, 1900. View at Google Scholar
  11. C. A. Coulomb, Essai sur une Application des Règles de Maximis & Minimis à Quelques Problèmes de Statique, Relatifs à l'Architecture, De l'Imprimerie Royale, 1776.
  12. D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis or limit design,” Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952. View at Publisher · View at Google Scholar
  13. N. S. Ottosen, “A failure criterion for concrete,” Journal of the Engineering Mechanics Division, ASCE, vol. 103, no. 4, pp. 527–535, 1977. View at Google Scholar · View at Scopus
  14. N. S. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier, Oxford, UK, 2005.
  15. M. Zyczkowski, Combined Loadings in the Theory of Plasticity, Springer Science & Business Media, 1981.
  16. E. Hoek and E. T. Brown, “Empirical strength criterion for rock masses,” Journal of the Geotechnical Engineering Division, ASCE, vol. 106, no. 15715, pp. 1013–1035, 1980. View at Google Scholar · View at Scopus
  17. E. Hoek and E. T. Brown, Underground Excavations in Rock, Instn Min. Metall, London, UK, 1980.
  18. P. Menetrey and K. J. Willam, “Triaxial failure criterion for concrete and its generalization,” ACI Structural Journal, vol. 92, no. 3, pp. 311–318, 1995. View at Google Scholar · View at Scopus
  19. K. J. Willam and E. P. Warnke, “Constitutive models for the triaxial behavior of concrete,” in Proceedings of the International Association for Bridge and Structural Engineer Seminar on Structures Subjected to Triaxial Stresses, vol. 19, pp. 1–31, Bergamo, Italy, 1974.
  20. B. Bresler and K. S. Pister, “Strength of concrete under combined stresses,” ACI Journal Proceedings, vol. 55, no. 9, pp. 321–345, 1958. View at Publisher · View at Google Scholar
  21. W. F. Chen and D. J. Han, Plasticity for Structural Engineers, Springer Science & Business Media, New York, NY, USA, 2012.
  22. H. Kupfer, H. K. Hilsdorf, and H. Rusch, “Behavior of concrete under biaxial stresses,” Journal of American Concrete Institute, vol. 66, no. 8, pp. 656–666, 1969. View at Google Scholar · View at Scopus
  23. G. Shickert and H. Winkler, Results of Tests Concerning Strength and Strain of Concrete Subjected to Multiaxial Compressive Stresses, Deutscher Ausschuss für Stahlbeton, Berlin, Germany, 1977.
  24. G. G. Balmer, Shearing Strength of Concrete Under High Triaxial Stress-Computation of Mohr's Envelope as a Curve, Branch of Design and Construction, US Bureau of Reclamation, 1949.
  25. F. E. Richart, A. Brandtzaeg, and R. L. Brown, “A study of the failure of concrete under combined compressive stresses,” Engineering Experiment Station 185, Bulletin, 1928. View at Google Scholar
  26. M. Hakala and J. Valli, “ONKALO POSE experiment—phase 3: 3DEC prediction,” Working Report 2012-58, Posiva, Eurajoki, Finland, 2013, http://www.posiva.fi/files/3160/WR_2012-58.pdf. View at Google Scholar
  27. I. Kukkonen, L. Kivekäs, S. Vuoriainen, and M. Kääriä, “Thermal properties of rocks in Olkiluoto: results of laboratory measurements 1994–2010,” Working Report 2011-17, Posiva, Eurajoki, Finland, 2011, http://www.posiva.fi/files/1504/WR_2011-17_web.pdf. View at Google Scholar
  28. U. Åkesson, “Laboratory measurements of the coefficient of thermal expansion of olkiluoto drill core samples,” Working Report 2012-14, Posiva, Eurajoki, Finland, 2012, http://www.posiva.fi/files/2825/WR_2012-14web.pdf. View at Google Scholar
  29. SRMK C4 National Building Code of Finland: Thermal Insulation: Guidelines 2003, Ministry of the Environment, Helsinki, Finland, 2003, http://www.ym.fi/download/noname/%7B09D023C7-7562-449E-86A3-859BD06C7BB9%7D/31549.
  30. A. M. Neville, Properties of Concrete, Longman Group, London, UK, 1995.
  31. Posiva, “Olkiluoto site description 2011,” Posiva Report 2011-02, Posiva, Eurajoki, Finland, 2012, http://posiva.fi/files/3002/POSIVA_2011-02.pdf. View at Google Scholar
  32. Posiva, “Olkiluoto site description 2008,” Posiva Report 2009-01, Posiva, Eurajoki, Finland, 2009, http://www.posiva.fi/files/1035/Posiva2009-01_web_part1.1rev.pdf. View at Google Scholar
  33. EN, “Eurocode 2: design of concrete structures. Part 1-1: general rules and rules for buildings,” EN 1992-1-1, European Committee for Standardization, CEN, Brussels, Belgium, 2004. View at Google Scholar
  34. T. Siren, “Fracture mechanics prediction for Posiva's Olkiluoto spalling experiment (POSE),” Working Report 2011-23, Posiva, Eurajoki, Finland, 2011, http://www.posiva.fi/files/1703/WR_2011-23_web.pdf. View at Google Scholar
  35. T. Siren, “Fracture toughness properties of rocks in Olkiluoto: laboratory measurements 2008-2009,” Working Report 2012-25, Posiva, Eurajoki, Finland, 2012, http://www.posiva.fi/files/2854/WR_2012-25web.pdf. View at Google Scholar
  36. J. Davies, “Numerical study of punch-through shear specimen in mode II testing for cementitious materials,” International Journal of Cement Composites and Lightweight Concrete, vol. 10, no. 1, pp. 3–14, 1988. View at Publisher · View at Google Scholar
  37. R. N. Swamy, “Fracture mechanics applied to concrete,” in Developments in Concrete Technology, Part I, F. D. Lydon, Ed., pp. 221–281, Applied Science, London, UK, 1979. View at Google Scholar
  38. H. W. Reinhardt, J. Ošbolt, X. Shilang, and A. Dinku, “Shear of structural concrete members and pure mode II testing,” Advanced Cement Based Materials, vol. 5, no. 3-4, pp. 75–85, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. S. L. Crouch, “Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution,” International Journal for Numerical Methods in Engineering, vol. 10, no. 2, pp. 301–343, 1976. View at Publisher · View at Google Scholar
  40. Y. J. Liu and Y. X. Li, “Revisit of the equivalence of the displacement discontinuity method and boundary element method for solving crack problems,” Engineering Analysis with Boundary Elements, vol. 47, pp. 64–67, 2014. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus