Table of Contents Author Guidelines Submit a Manuscript
Journal of Engineering
Volume 2019, Article ID 4925056, 9 pages
Research Article

An Approach Method to Evaluate Wood Emissivity

Unit for Inland Development, Polytechnic Institute of Guarda, Av. Francisco Sá Carneiro N 50, 6300-559 Guarda, Portugal

Correspondence should be addressed to Rui Pitarma; tp.gpi@amratipr

Received 22 May 2019; Accepted 7 July 2019; Published 19 August 2019

Academic Editor: Kevser Dincer

Copyright © 2019 Rui Pitarma and João Crisóstomo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Silva, A. Dias, and J. L. Lousada, Madeira de Pinho—Caraterísticas e Utilização, UTAD, Vila Real, Portugal, 2013.
  2. C. J. Humphries, J. R. Press, and D. A. Sutton, Árvores de Portugal e Europa, FAPAS, Porto, Portugal, 1996.
  3. A. Wyckhuyse and X. P. V. Maldague, “Wood inspection by infrared thermography,” in Proceedings of the IVth IWASPNDE, vol. 6, pp. 201–206, Quebec, Canada, July 2002.
  4. V. Bucur, “Techniques for high resolution imaging of wood structure: a review,” Measurement Science and Technology, vol. 14, no. 12, pp. R91–R98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. X. P. V. Maldague, Nondestructive Evaluation of Materials by Infrared Thermography, Springer-Verlag, London, UK, 1993.
  6. V. Bucur, Nondestructive Characterization and Imaging of Wood, Springer Science & Business Media, New York, NY, USA, 2003.
  7. A. Kandemir-Yucel, A. Tavukcuoglu, and E. N. Caner-Saltik, “In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity,” Infrared Physics & Technology, vol. 49, no. 3, pp. 243–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. R. Liñán, M. J. Morales Conde, P. Rubio de Hita, and F. Pérez Gálvez, “Inspección mediante técnicas no destructivas de un edificio histórico: oratorio San Felipe Neri (Cádiz),” Informes de la Construcción, vol. 63, no. 521, pp. 13–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Rosina and E. C. Robison, “Applying infrared thermography to historic wood-framed buildings in North America,” APT Bulletin, vol. 4, no. 33, pp. 37–44, 2002. View at Publisher · View at Google Scholar
  10. T. Tanaka and F. Divós, “Wood inspection by thermography,” in Proceedings of the 12th International Symposium on Nondestructive Testing of Wood, Hungary, Sopron, September 2000.
  11. C. Ciocia and S. Marinetti, “In-situ emissivity measurement of construction materials,” in Proceedings of 11th International Conference on Quantitative Infrared Thermography, Naples, Italy, June 2012.
  12. W. Rice, “Emittance factors for infrared Thermometers used for wood products,” Wood and Fiber Science, vol. 36, pp. 520–526, 2004. View at Google Scholar
  13. E. Fronapfel and B. Stolz, “Emissivity measurements of common construction materials,” in Proceedings InfraMation, vol. 7, pp. 13–21, 2006.
  14. N. Avdelidis and A. Moropoulou, “Emissivity considerations in building thermography,” Energy and Buildings, vol. 35, no. 7, pp. 663–667, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Marinetti and P. G. Cesaratto, “Emissivity estimation for accurate quantitative thermography,” NDT & E International, vol. 51, pp. 127–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. G. López, L. A. Basterra, L. Acuña, and M. Casado, “Determination of the emissivity of wood for inspection by infrared thermography,” Journal of Nondestructive Evaluation, vol. 32, no. 2, pp. 172–176, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Lombillo, E. Agudo, and L. Villegas, “Evaluación no destructiva del patrimonio construido: inspección visual, técnicas acústicas, electromagnéticas y tomográficas,” in Proceedings of the XI Congreso Español de Ensayos No Destructivos, Gijón, Spain, March 2007.
  18. FLIR Systems, Manual do Utilizador Série FLIR T10XX, FLIR, Wilsonville, OR, USA, 2018.
  19. ASTM E1933-99a, Standard Test Methods for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers, American Society for Testing and Materials, West Conshohocken, PA, USA, 2010.
  20. FLIR Systems, Manual do Utilizador FLIR Tools/Tools+, FLIR, Wilsonville, OR, USA, 2018.
  21. M. Spencer, L. Penn, J. Nychka, L. Boyer, J. Liebertz, and L. Everdale, Applying Infrared Thermography for the Purpose of Identifying Concealed Wood Framing Member Type and Subsurface Anomalies with Intended Application towards Historic Structures, Department of Historic Preservation, College of Design, University of Kentucky, Lexington, KY, USA, 2008.
  22. G. Holst, Common Sense Approach to Thermal Imaging, SPIE Optical Engineering Press, Bellingham, WA, USA, 2000.
  23. R. Pitarma, J. Crisóstomo, and L. Jorge, “Analysis of materials emissivity based on image software,” in New Advances in Information Systems and Technologies, Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, and M. M. Teixeira, Eds., vol. 444, pp. 749–757, Springer International Publishing, Cham, Switzerland, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Crisóstomo, “Contribuição para a análise de manifestações patológicas em madeira na construção com recurso à termografia—determinação da emissividade de algumas espécies de madeira empregues em Portugal,” Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal, 2014, M.Sc. thesis. View at Google Scholar
  25. J. Crisóstomo and R. Pitarma, “The importance of emissivity on monitoring and conservation of wooden structures using infrared thermography,” in Advances in Structural Health Monitoring, M. Hassan, Ed., IntechOpen, London, UK, 2019. View at Publisher · View at Google Scholar
  26. IPQ, NP 614: Madeiras—Determinação Teor Em Água, IPQ, Castelo Branco, Portugal, 1973.