Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 703243, 11 pages
http://dx.doi.org/10.1155/2012/703243
Research Article

Performance Comparison of Doppler Scale Estimation Methods for Underwater Acoustic OFDM

1Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way U-2157, Storrs, CT 06269, USA
2National Sun Yat-Sen University, Kaohsiung, Taiwan
3Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way U-2155, Storrs, CT 06269, USA

Received 13 January 2012; Accepted 5 April 2012

Academic Editor: Charalampos C. Tsimenidis

Copyright © 2012 Lei Wan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, “Challenges for efficient communication in underwater acoustic sensor networks,” ACM SIGBED Review, vol. 1, no. 1, pp. 3–8, 2004. View at Google Scholar
  2. J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications,” IEEE Network, vol. 20, no. 3, pp. 12–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Stojanovic, “Low complexity OFDM detector for underwater acoustic channels,” in OCEANS 2006, usa, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Li, S. Zhou, M. Stojanovic, L. L. Freitag, and P. Willett, “Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts,” IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 198–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Qu and L. Yang, “Basis expansion model for underwater acoustic channels?” in OCEANS 2008, can, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Kang and R. A. Iltis, “Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, Article ID 4686804, pp. 1650–1661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Leus and P. A. Van Walree, “Multiband OFDM for covert acoustic communications,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, Article ID 4686805, pp. 1662–1673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. V. Walree and G. Leus, “Robust underwater telemetry with adaptive turbo multiband equalization,” IEEE Journal of Oceanic Engineering, vol. 34, no. 4, Article ID 5299204, pp. 645–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Abdi and H. Guo, “A new compact multichannel receiver for underwater wireless communication networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3326–3329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Li, J. Huang, S. Zhou et al., “MIMO-OFDM for high-rate underwater acoustic communications,” IEEE Journal of Oceanic Engineering, vol. 34, no. 4, Article ID 5290161, pp. 634–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, “Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1708–1721, 2010. View at Publisher · View at Google Scholar
  12. P. Ceballos and M. Stojanovic, “Adaptive channel estimation and data detection for underwater acoustic MIMO-OFDM Systems,” IEEE Journal of Oceanic Engineering, vol. 35, no. 3, Article ID 5530330, pp. 635–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Kang, H. C. Song, W. S. Hodgkiss, and J. Soo Kim, “Long-range multi-carrier acoustic communications in shallow water based on iterative sparse channel estimation,” Journal of the Acoustical Society of America, vol. 128, no. 6, pp. EL372–EL377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Tao, Y. R. Zheng, C. Xiao, and T. C. Yang, “Robust MIMO underwater acoustic communications using turbo block decision-feedback equalization,” IEEE Journal of Oceanic Engineering, vol. 35, no. 4, Article ID 5634060, pp. 948–960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Tao, J. Wu, Y. R. Zheng, and C. Xiao, “Enhanced MIMO LMMSE turbo equalization: algorithm, simulations, and undersea experimental results,” IEEE Transactions on Signal Processing, vol. 59, no. 8, Article ID 5756490, pp. 3813–3823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Tu, D. Fertonani, T. M. Duman, M. Stojanovic, J. G. Proakis, and P. Hursky, “Mitigation of intercarrier interference for OFDM over time-varying underwater acoustic channels,” IEEE Journal of Oceanic Engineering, vol. 36, no. 2, Article ID 5766772, pp. 156–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-Z. Huang, S. Zhou, J. Huang, C. R. Berger, and P. Willett, “Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels,” IEEE Journal on Selected Topics in Signal Processing, vol. 5, no. 8, Article ID 5893908, pp. 1524–1536, 2011. View at Publisher · View at Google Scholar
  18. H. Wan, R.-R. Chen, J. W. Choi, A. C. Singer, J. C. Preisig, and B. Farhang-Boroujeny, “Markov chain Monte Carlo detection for frequency-selective channels using list channel estimates,” IEEE Journal on Selected Topics in Signal Processing, vol. 5, no. 8, Article ID 6053992, pp. 1537–1547, 2011. View at Publisher · View at Google Scholar
  19. A. Song, M. Badiey, V. McDonald, and T. Yang, “Time reversal receivers for high rate multiple-input/multiple-output communication,” IEEE Journal of Oceanic Engineering, vol. 34, no. 4, pp. 525–538, 2011. View at Google Scholar
  20. B. S. Sharif, J. Neasham, O. R. Hinton, and A. E. Adams, “Computationally efficient Doppler compensation system for underwater acoustic communications,” IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 52–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Yerramalli and U. Mitra, “Optimal resampling of OFDMm signals for multiscale-multilag underwater acoustic channels,” IEEE Journal of Oceanic Engineering, vol. 36, no. 1, Article ID 5732766, pp. 126–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell System Technical Journal, vol. 39, pp. 745–808, 1960. View at Google Scholar
  23. S. Kramer, “Doppler and acceleration tolerances of high-gain, wideband linear FM correlation sonars,” Proceedings of the IEEE, vol. 55, no. 5, pp. 627–636, 1967. View at Google Scholar
  24. J. J. Kroszczyński, “Pulse compression by means of linear-period modulation,” Proceedings of the IEEE, vol. 57, no. 7, pp. 1260–1266, 1969. View at Google Scholar
  25. T. Yang, “Underwater telemetry method using Doppler compensation,” U.S. Patent 6512720, 2003. View at Google Scholar
  26. J. P. Costas, “A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties,” Proceedings of the IEEE, vol. 72, no. 8, pp. 996–1009, 1984. View at Google Scholar · View at Scopus
  27. J. G. Proakis, Digital Communications, McGraw-Hill, New York, NY, USA, 4th edition, 2001.
  28. R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation properties (corresp.),” IRE Transactions on Information Theory, vol. 8, no. 6, pp. 381–382, 1962. View at Google Scholar
  29. S. F. Mason, C. R. Berger, S. Zhou, and P. Willett, “Detection, synchronization, and doppler scale estimation with multicarrier waveforms in underwater acoustic communication,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, Article ID 4686803, pp. 1638–1649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Yan, L. Wan, S. Zhou et al., “DSP based receiver implementation for OFDM acoustic modems,” Physical Communication, vol. 5, no. 1, pp. 22–32, 2012. View at Publisher · View at Google Scholar
  31. X. Ma, C. Tepedelenlioǧlu, G. B. Giannakis, and S. Barbarossa, “Non-data-aided carrier offset estimators for OFDM with null subcarriers: identifiability, algorithms, and performance,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 12, pp. 2504–2515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Tu, T. M. Duman, J. G. Proakis, and M. Stojanovic, “Cooperative MIMO-OFDM communications: receiver design for Doppler-distorted underwater acoustic channels,” in Proceedings of the 44th Asilomar Conference on Signals, Systems and Computers (Asilomar '10), pp. 1335–1339, Pacific Grove, Calif, USA, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Huang, S. Zhou, and P. Willett, “Nonbinary LDPC coding for multicarrier underwater acoustic communication,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 9, Article ID 4686807, pp. 1684–1696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Friedlander, “On the Cramer- Rao bound for time delay and Doppler estimation (corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 3, pp. 575–580, 1984. View at Google Scholar · View at Scopus
  35. X. X. Niu, “Wavelet based approach for joint time delay and doppler stretch measurements,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 3, pp. 1111–1119, 1999. View at Publisher · View at Google Scholar