Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012 (2012), Article ID 794106, 8 pages
Research Article

Text-Dependent Writer Identification for Arabic Handwriting

Department of Computer Science and Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

Received 1 September 2011; Revised 7 November 2011; Accepted 28 November 2011

Academic Editor: Fouad Khelifi

Copyright © 2012 Somaya Al-Maadeed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper proposes a system for text-dependent writer identification based on Arabic handwriting. First, a database of words was assembled and used as a test base. Next, features vectors were extracted from writers' word images. Prior to the feature extraction process, normalization operations were applied to the word or text line under analysis. In this work, we studied the feature extraction and recognition operations of Arabic text on the identification rate of writers. Because there is no well-known database containing Arabic handwritten words for researchers to test, we have built a new database of offline Arabic handwriting text to be used by the writer identification research community. The database of Arabic handwritten words collected from 100 writers is intended to provide training and testing sets for Arabic writer identification research. We evaluated the performance of edge-based directional probability distributions as features, among other characteristics, in Arabic writer identification. Results suggest that longer Arabic words and phrases have higher impact on writer identification.