Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013, Article ID 217021, 18 pages
http://dx.doi.org/10.1155/2013/217021
Review Article

Total Variation Regularization Algorithms for Images Corrupted with Different Noise Models: A Review

Department of Electrical Engineering, Pontifical Catholic University of Peru, San Miguel, Lima 32, Peru

Received 26 October 2012; Revised 17 May 2013; Accepted 9 June 2013

Academic Editor: Florian Luisier

Copyright © 2013 Paul Rodríguez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Bovik, The Essential Guide To Image Processing, Academic Press, Boston, Mass, USA, 2009.
  2. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, no. 1–4, pp. 259–268, 1992. View at Google Scholar · View at Scopus
  3. T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” in Handbook of Mathematical Models in Computer Vision, Springer, New York, NY, USA, 2005. View at Google Scholar
  4. D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Problems, vol. 19, no. 6, pp. S165–S187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Kvam and B. Vidakovic, Nonparametric Statistics with Applications to Science and Engineering, Wiley-Interscience, New York, NY, USA, 2007.
  6. N. P. Galatsanos, A. K. Katsaggelos, R. T. Chin, and A. D. Hillery, “Least squares restoration of multichannel images,” IEEE Transactions on Signal Processing, vol. 39, no. 10, pp. 2222–2236, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, NY, USA, 3rd edition, 1991.
  8. M. Lindenbaum, M. Fischer, and A. Bruckstein, “On Gabor's contribution to image enhancement,” Pattern Recognition, vol. 27, no. 1, pp. 1–8, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Processing Magazine, vol. 14, no. 2, pp. 24–41, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of the IEEE 6th International Conference on Computer Vision, pp. 839–846, January 1998. View at Scopus
  11. S. M. Smith and J. M. Brady, “SUSAN—a new approach to low level image processing,” International Journal of Computer Vision, vol. 23, no. 1, pp. 45–78, 1997. View at Google Scholar · View at Scopus
  12. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on Information Theory, vol. 41, no. 3, pp. 613–627, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Marks, G. L. Wise, D. G. Haldeman, and J. L. Whited, “Detection in laplace noise,” IEEE Transactions on Aerospace and Electronic Systems, vol. 14, no. 6, pp. 866–872, 1978. View at Google Scholar · View at Scopus
  16. S. Alliney, “Digital filters as absolute norm regularizers,” IEEE Transactions on Signal Processing, vol. 40, no. 6, pp. 1548–1562, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Alliney, “A property of the minimum vectors of a regularizing functional defined by means of the absolute norm,” IEEE Transactions on Signal Processing, vol. 45, no. 4, pp. 913–917, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Alliney and S. A. Ruzinsky, “Algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation,” IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 618–627, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Nikolova, “Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers,” SIAM Journal on Numerical Analysis, vol. 40, no. 3, pp. 965–994, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function approximation,” SIAM Journal on Applied Mathematics, vol. 65, no. 5, pp. 1817–1837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Tukey, “Nonlinear (nonsuperimposable) methods for smoothing data,” in Proceedings of the IEEE Electronics and Aerospace Conference (EASCON '74), p. 673, Conference Records, 1974.
  22. H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms and results,” IEEE Transactions on Image Processing, vol. 4, no. 4, pp. 499–502, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. S.-J. Ko and Y. H. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Transactions on Circuits and Systems, vol. 38, no. 9, pp. 984–993, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Wang and D. Zhang, “Progressive switching median filter for the removal of impulse noise from highly corrupted images,” IEEE Transactions on Circuits and Systems II, vol. 46, no. 1, pp. 78–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Garnett, T. Huegerich, C. Chui, and W. He, “A universal noise removal algorithm with an impulse detector,” IEEE Transactions on Image Processing, vol. 14, no. 11, pp. 1747–1754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Schulte, M. Nachtegael, V. de Witte, D. van der Weken, and E. E. Kerre, “A fuzzy impulse noise detection and reduction method,” IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1153–1162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Dong and S. Xu, “A new directional weighted median filter for removal of random-valued impulse noise,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 193–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Richardson, “Bayesian-based iterative method of image restoration,” Journal of the Optical Society of America, vol. 62, no. 1, pp. 55–59, 1972. View at Google Scholar
  29. L. Lucy, “An iterative technique for the rectification of observed distributions,” The Astronomical Journal, vol. 79, p. 745, 1974. View at Publisher · View at Google Scholar
  30. J. Starck and F. Murtagh, Astronomical Image and Data Analysis (Astronomy and Astrophysics Library), Springer, New York, NY, USA, 2006.
  31. B. Zhang, J. M. Fadili, and J.-L. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Transactions on Image Processing, vol. 17, no. 7, pp. 1093–1108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. F.-X. Dupe, J. M. Fadili, and J.-L. Starck, “A proximal iteration for deconvolving Poisson noisy images using sparse representations,” IEEE Transactions on Image Processing, vol. 18, no. 2, pp. 310–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Mäkitalo and A. Foi, “Optimal inversion of the anscombe transformation in low-count poisson image denoising,” IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 99–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Anscombe, “The transformation of poisson, binomial and negativebinomial data,” Biometrika, vol. 35, no. 3-4, pp. 246–254, 1948. View at Google Scholar
  35. M. Freeman and J. Tukey, “Transformations related to the angular and the square root,” The Annals of Mathematical Statistics, vol. 21, no. 4, pp. 607–611, 1950. View at Google Scholar
  36. J. W. Goodman, “Some fundamental properties of speckle,” Journal of the Optical Society of America, vol. 66, no. 11, pp. 1145–1150, 1976. View at Google Scholar
  37. C. Loizou and C. Pattichis, Despeckle Filtering Algorithms and Software For Ultrasound Imaging, Synthesis Lectures on Algorithms and Software in Engineering, Morgan & Claypool Publishers, 2008.
  38. G. Aubertt and J.-F. Aujol, “A variational approach to removing multiplicative noise,” SIAM Journal on Applied Mathematics, vol. 68, no. 4, pp. 925–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Sheng, Y. Xin, Y. Liping, and S. Kun, “Total variation-based speckle reduction using multi-grid algorithm for ultrasound images,” in Image Analysis and Processing ICIAP 2005, vol. 3617, pp. 245–252, Springer, Berlin, Germany, 2005. View at Google Scholar
  40. B. Li, Q. Liu, J. Xu, and X. Luo, “A new method for removing mixed noises,” Science China Information Sciences, vol. 54, no. 1, pp. 51–59, 2011. View at Google Scholar
  41. R. Rojas, Automatic regularization parameter selection for the total variation mixed noise image restoration framework [M.S. thesis], Pontifical Catholic University of Peru (PUCP), 2012.
  42. J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, NY, USA, 2nd edition, 2006.
  43. D. G. Luenberge and Y. Ye, Linear and Nonlinear Programming, Springer, New York, NY, USA, 3rd edition, 2008.
  44. T. F. Chan and J. Shen, Image Processing and Analysis: Variational Pde, Wavelet, and Stochastic Methods, SIAM, 2005.
  45. A. Bonnet, “On the regularity of edges in image segmentation,” Annales de L’Institut Henri Poincaré C, vol. 13, no. 4, pp. 485–528, 1996. View at Google Scholar
  46. P. Blomgren and T. F. Chan, “Color TV: total variation methods for restoration of vector-valued images,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 304–309, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Huber, “Robust regression: asymptotics, conjectures and monte carlo,” The Annals of Statistics, vol. 1, no. 5, pp. 799–821, 1973. View at Google Scholar
  48. Y. Li and F. Santosa, “A computational algorithm for minimizing total variation in image restoration,” IEEE Transactions on Image Processing, vol. 5, no. 6, pp. 987–995, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Vogel, Computational Methods For Inverse Problems, SIAM, 2002.
  50. C. R. Vogel and M. E. Oman, “Iterative methods for total variation denoising,” SIAM Journal on Scientific Computing, vol. 17, no. 1, pp. 227–238, 1996. View at Google Scholar · View at Scopus
  51. C. R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Transactions on Image Processing, vol. 7, no. 6, pp. 813–824, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. T. F. Chan, G. H. Golub, and P. Mulet, “Nonlinear primal-dual method for total variation-based image restoration,” SIAM Journal on Scientific Computing, vol. 20, no. 6, pp. 1964–1977, 1999. View at Google Scholar · View at Scopus
  53. A. Chambolle, “An algorithm for total variation minimization and applications,” Journal of Mathematical Imaging and Vision, vol. 20, no. 1-2, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Krishnan, P. Lin, and A. M. Yip, “A primal-dual active-set method for non-negativity constrained total variation deblurring problems,” IEEE Transactions on Image Processing, vol. 16, no. 11, pp. 2766–2777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. E. Beaton and J. W. Tukey, “The fitting of power series, meaning polynomials illustrated on band-spectroscopic data,” Technometrics, vol. 16, no. 2, pp. 147–185, 1974. View at Google Scholar · View at Scopus
  56. R. Byrd and D. Payne, “Convergence of the iteratively reweighted least squares algorithm for robust regression,” Tech. Rep. 313, Johns Hopkins University, 1979. View at Google Scholar
  57. S. A. Ruzinsky and E. T. Olsen, “L1 and L minimization via a variant of Karmarkar's algorithm,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 2, pp. 245–253, 1989. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Daubechies, R. DeVore, M. Fornasier, and C. G. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics, vol. 63, no. 1, pp. 1–38, 2010. View at Google Scholar
  59. P. Rodríguez and B. Wohlberg, “Efficient minimization method for a generalized total variation functional,” IEEE Transactions on Image Processing, vol. 18, no. 2, pp. 322–332, 2009. View at Google Scholar
  60. M. A. T. Figueiredo, J. B. Dias, J. P. Oliveira, and R. D. Nowak, “On total variation denoising: a new majorization-minimization algorithm and an experimental comparison with wavalet denoising,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '06), pp. 2633–2636, Atlanta, GA, USA, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248–272, 2008. View at Google Scholar
  63. T. Goldstein and S. Osher, “The Split Bregman method for L1-egularized problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–343, 2009. View at Google Scholar
  64. D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Computers and Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976. View at Google Scholar · View at Scopus
  65. R. Glowinski and A. Marrocco, “Sur l’approximation par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problémes de dirichlet non lináires,” Revue Française d'automatique, Informatique, Recherche Opérationnelle, vol. 9, no. 2, pp. 41–72, 1975. View at Google Scholar
  66. M. A. T. Figueiredo and J. M. Bioucas-Dias, “Restoration of poissonian images using alternating direction optimization,” IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3133–3145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Bioucas-Dias and M. A. T. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Transactions on Image Processing, vol. 19, no. 7, pp. 1720–1730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Rodriguez and B. Wohlberg, “A comparison of the computational performance of iteratively reweighted least squares and alternating minimization algorithms for 1 inverse problems,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '12), pp. 3069–3072, 2012.
  69. F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, “Multiplicative updates for nonnegative quadratic programming,” Neural Computation, vol. 19, no. 8, pp. 2004–2031, 2007. View at Google Scholar · View at Scopus
  70. P. O’Grady and S. Rickard, “Recovery of non-negative signals from compressively sampled observations via non-negative quadratic programming,” in Proceedings of the Signal Processing with Adaptive Sparse Structured Representations (SPARS '09), Saint Malo, France, April 2009.
  71. J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-texture image decomposition-modeling, algorithms, and parameter selection,” International Journal of Computer Vision, vol. 67, no. 1, pp. 111–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total variation-based image deconvolution: a majorization-minimization approach,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '06), pp. II861–II864, Toulouse, France, May 2006. View at Scopus
  73. M. A. T. Figueiredo, J. B. Dias, J. P. Oliveira, and R. D. Nowak, “On total variation denoising: a new majorization-minimization algorithm and an experimental comparison with wavalet denoising,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '06), pp. 2633–2636, Atlanta, GA, USA, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the em algorithm,” Journal of the Royal Statistical Society B, vol. 39, no. 1, pp. 1–38, 1977. View at Google Scholar
  75. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Transactions on Image Processing, vol. 16, no. 12, pp. 2992–3004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Wang, W. Yin, and Y. Zhang, “A fast algorithm for image deblurring with total variation regularization,” Tech. Rep., Rice University, 2007. View at Google Scholar
  77. H. Fu, M. Ng, M. Nikolova, and J. Barlow, “Efficient minimization methods of mixed 2-1 and 1-1 norms for image restoration,” SIAM Journal on Scientific Computing, vol. 27, no. 6, pp. 1881–1902, 2006. View at Google Scholar
  78. T. Chan, S. Kang, and J. Shen, “Total variation denoising and enhancement of color images based on the CB and HSV color models,” The Journal of Visual Communication and Image Representation, vol. 12, pp. 422–435, 2001. View at Google Scholar
  79. X. Bresson and T. Chan, “Fast dual minimization of the vectorial total variation norm and applications to color image processing,” Inverse Problems and Imaging, vol. 2, no. 4, pp. 455–484, 2008. View at Google Scholar
  80. Y.-W. Wen, M. K. Ng, and Y.-M. Huang, “Efficient total variation minimization methods for color image restoration,” IEEE Transactions on Image Processing, vol. 17, no. 11, pp. 2081–2088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Rodríguez and B. Wohlberg, “A generalized vector-valued total variation algorithm,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pp. 1309–1312, Cairo, Egypt, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-preserving variational multichannel image restoration,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 569–592, 2009. View at Google Scholar
  83. L. Bar, A. Brook, N. Sochen, and N. Kiryati, “Deblurring of color images corrupted by impulsive noise,” IEEE Transactions on Image Processing, vol. 16, no. 4, pp. 1101–1111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Rodríguez, “Multiplicative updates algorithm to minimize the generalized total variation functional with a non-negativity constraint,” in Proceedings of the 17th IEEE International Conference on Image Processing, ICIP 2010, pp. 2509–2512, Hong Kong, China, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Chartrand and B. Wohlberg, “Total-variation regularization with bound constraints,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '10), pp. 766–769, Dallas, TX, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Rodríguez, “A non-negative quadratic programming approach to minimize the generalized vector-valued total variation functional,” in Proceedings of the European Signal Processing Conference (EUSIPCO '10), pp. 314–318, Aalborg, Denmark, 2010.
  88. D. Strong and T. Chan, “Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing,” Diusion in Image Processing, UCLA Math Department CAM Report, 1996. View at Google Scholar
  89. S. Ramani, T. Blu, and M. Unser, “Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms,” IEEE Transactions on Image Processing, vol. 17, no. 9, pp. 1540–1554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Lin, B. Wohlberg, and H. Guo, “UPRE method for total variation parameter selection,” Signal Processing, vol. 90, no. 8, pp. 2546–2551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Nikolova, “A variational approach to remove outliers and impulse noise,” Journal of Mathematical Imaging and Vision, vol. 20, no. 1-2, pp. 99–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Chambolle, “Total variation minimization and a class of binary MRF models,” in Proceedings of the 5th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, vol. 3757, pp. 136–152, 2005.
  93. J. Darbon and M. Sigelle, “Image restoration with discrete constrained total variation part I: fast and exact optimization,” Journal of Mathematical Imaging and Vision, vol. 26, no. 3, pp. 261–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Darbon and M. Sigelle, “Image restoration with discrete constrained total variation part II: levelable functions, convex priors and non-convex cases,” Journal of Mathematical Imaging and Vision, vol. 26, no. 3, pp. 277–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Goldfarb and W. Yin, “Parametric maximum flow algorithms for fast total variation minimization,” Tech. Rep. CAAM TR07-09, Department of Computational and Applied Mathematics, Rice University, 2007. View at Google Scholar
  96. D. S. Hochbaum, “An efficient algorithm for image segmentation, Markov random fields and related problems,” Journal of the ACM, vol. 48, no. 4, pp. 686–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Goldfarb and W. Yin, “Second-order cone programming methods for total variation-based image restoration,” SIAM Journal on Scientific Computing, vol. 27, no. 2, pp. 622–645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479–1485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Dong, M. Hintermüller, and M. Rincon-Camacho, “Automated regularization parameter selection in Multi-Scale total variation models for image restoration,” Journal of Mathematical Imaging and Vision, vol. 40, no. 1, pp. 82–104, 2010. View at Google Scholar
  100. R. Rojas and P. Rodríguez, “Spatially adaptive total variation image denoising under salt and pepper noise,” in Proceedings of the European Signal Processing Conference (EUSIPCO '11), pp. 314–318, Barcelona, Spain, 2011.
  101. E. Jonsson, S. Huang, and T. Chan, “Total-variation regularization in positron emission tomography,” UCLA CAM Report 98-48, 1998. View at Google Scholar
  102. N. Dey, L. Blanc-Feraud, C. Zimmer et al., “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microscopy Research and Technique, vol. 69, no. 4, pp. 260–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. R. H. Chan and K. Chen, “Multilevel algorithm for a Poisson noise removal model with total-variation regularization,” International Journal of Computer Mathematics, vol. 84, no. 8, pp. 1183–1198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. M. Bardsley and A. Luttman, “Total variation-penalized Poisson likelihood estimation for ill-posed problems,” Advances in Computational Mathematics, vol. 31, no. 1–3, pp. 25–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Sawatzky, C. Brune, J. Müller, and M. Burger, “Total variation processing of images with Poisson statistics,” in Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns (CAIP '09), vol. 5702, pp. 533–540, 2009.
  106. R. M. Willett, Z. T. Harmany, and R. F. Marcia, “Poisson image reconstruction with total variation regularization,” in Proceedings of the 17th IEEE International Conference on Image Processing (ICIP '10), pp. 4177–4180, Hong Kong, China, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. I. C. Rodrigues and J. M. R. Sanches, “Convex total variation denoising of poisson fluorescence confocal images with anisotropic filtering,” IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 146–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Rodriguez, “Total variation regularization for Poisson vector-valued image restoration with a spatially adaptive regularization parameter selection,” in Proceedings of the 7th International Symposium on Image and Signal Processing and Analysis (ISPA '11), pp. 402–407, Dubrovnik, Croatia, September 2011. View at Scopus
  109. R. Chartrand and V. Staneva, “A quasi-newton method for total variation regularization of images corrupted by non-gaussian noise,” IET Image Processing, vol. 2, pp. 295–303, 2008. View at Google Scholar
  110. S. Osher, N. Paragios, L. Rudin, and P. Lions, “Multiplicative denoisdenoising and deblurring: theory and algorithms,” in Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–119, Springer, New York, NY, USA, 2003. View at Google Scholar
  111. J. M. Bioucas-Dias and M. A. T. Figueiredo, “Total variation restoration of speckled images using a split-Bregman algorithm,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pp. 3717–3720, Cairo, Egypt, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Darbon, M. Sigelle, and F. Tupin, “A note on nice-levelable MRFs for SAR image denoising with contrast preservation,” Rapport Interne ENST 2006D006, Ecole Nat. Supérieure des Télécommunications, Paris, France, 2006. View at Google Scholar
  113. S. Durand, J. Fadili, and M. Nikolova, “Multiplicative noise removal using l1 fidelity on frame coefficients,” Journal of Mathematical Imaging and Vision, vol. 36, no. 3, pp. 201–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Shi and S. Osher, “A nonlinear inverse scale space method for a convex multiplicative noise model,” SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 294–321, 2008. View at Google Scholar
  115. L. Xiao, L.-L. Huang, and Z.-H. Wei, “Multiplicative noise removal via a novel variational model,” Eurasip Journal on Image and Video Processing, vol. 2010, Article ID 250768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Shen, “On the foundations of vision modeling: I. Weber's law and Weberized TV restoration,” Physica D, vol. 175, no. 3-4, pp. 241–251, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Rodríguez, “Nonconvex total variation speckled image restoration via nonnegative quadratic programming algorithm,” in Proceedings of the European Signal Processing Conference (EUSIPCO '11), pp. 288–292, Barcelona, Spain, August 2011.
  118. P. Rodríguez, R. Rojas, and B. Wohlberg, “Mixed gaussian-impulse noise image restoration via total variation,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '12), pp. 1077–1080, Kyoto, Japan, March 2012.
  119. J. Cai, R. Chan, and M. Nikolova, “Two-phase methods for deblurring corrupted by impulse plus Gaussian noise,” Inverse Problems and Imaging, vol. 2, no. 2, pp. 187–204, 2008. View at Google Scholar
  120. J. Cai, R. Chan, and M. Nikolova, “Fast two-phase image deblurring under impulse noise,” Journal of Mathematical Imaging and Vision, vol. 36, no. 1, pp. 46–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Xiao, T. Zeng, J. Yu, and M. K. Ng, “Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization,” Pattern Recognition, vol. 44, no. 8, pp. 1708–1720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. Signal and I. P. I. of the University of Southern California, “The USCSIPI image database,” http://sipi.usc.edu/database/.
  123. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. P. Rodriguez, “IRLS based TV algorithms for different noise models, Matlab central file,” http://www.mathworks.com/matlabcentral/.