Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013 (2013), Article ID 379832, 6 pages
http://dx.doi.org/10.1155/2013/379832
Research Article

Multiband Software Defined Radar for Soil Discontinuities Detection

1Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036 Rende (CS), Italy
2Facultad de Informatica y Electronica, Escuela Superior Politecnica de Chimborazo, Riobamba, EC060155, Ecuador

Received 30 May 2013; Accepted 24 June 2013

Academic Editor: Alvaro Rocha

Copyright © 2013 S. Costanzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Aloi, A. Borgia, S. Costanzo et al., “Software defined radar: synchronization issues and practical implementation,” in Proceedings of the 4th International Conference on Cognitive Radio and Advanced Spectrum Management (CogART '11), Barcelona, Spain, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Costanzo, F. Spadafora, A. Borgia, O. H. Moreno, A. Costanzo, and G. Di Massa, “High resolution software defined radar system for target detection,” Advances in Intelligent Systems and Computing, vol. 206, pp. 997–1005, 2013. View at Google Scholar
  3. S. Sen, M. Hurtado, and A. Nehorai, “Adaptive OFDM radar for detecting a moving target in urban scenarios,” in Proceedings of the International Waveform Diversity and Design Conference (WDD '09), pp. 268–272, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bausson and P. Forster, “Detection and pulse compression In passive radar with OFDM radio signals,” in Proceedings of the 16th European Signal Processing Conference (EUSIPCO '08), Lausanne, Switzerland, 2008.
  5. M. Braun, C. Sturm, and F. K. Jondral, “Maximum likelihood speed and distance estimation for OFDM radar,” in Proceedings of the IEEE International Radar Conference (RADAR '10), pp. 256–261, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in Proceedings of the 69th IEEE Vehicular Technology Conference (VTC '09), April 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Fuhr, M. Braun, C. Sturmz, L. Reichardtz, and F. K. Jondral, “An SDR-based experimental setup for OFDM-based radar,” in Proceedings of the Virginia Tech Symposium on Wireless Communications, Blacksburg, Va, USA, June 2012.
  8. S. Sen and A. Nehorai, “Adaptive design of OFDM radar signal with improved wideband ambiguity function,” IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 928–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Majurec, S. M. Sekelsky, S. J. Frasier, and S. A. Rutledge, “The advanced multi-frequency radar (AMFR) for remote sensing of clouds and precipitation,” in Proceedings of the 11th Conference on Mesoscale Processes and the 32nd Conference on Radar Meteorology, pp. 1051–1057, Albuquerque, NM, USA, October 2005, paper no. P1R.6. View at Scopus
  10. P. V. Genderen, P. Hakkaart, J. V. Heijenoort, and G. P. Hermans, “A multi frequency radar for detecting landmines: design aspects and electrical performance,” in Proceedings of the 31st European Microwave Conference, vol. 2, pp. 249–252, 2001.
  11. M. L. Bryan, “Interpretation of an urban scene using multi-channel radar imagery,” Remote Sensing of Environment, vol. 4, no. 1, pp. 49–66, 1975. View at Google Scholar · View at Scopus
  12. B. R. Mahafza and A. Z. Elsherbeni, Simulations for Radar Systems Design, Chapman and Hall/CRC, 2003.
  13. C. Sturm, T. Zwick, and W. Wiesbeck, “Spectral estimation-based OFDM radar algorithms for IEEE 802.11a signals,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '12), 2012.
  14. N. R. Peplinski, F. T. Ulaby, and M. C. Dobson, “Dielectric properties of soils in the 0.3–1.3-GHz range,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 3, pp. 803–807, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. T. W. Miller, B. Borchers, J. M. H. Hendrickx, S. Hong, L. W. Dekker, and C. J. Ritsema, “Effects of soil physical properties on GPR for landmine detection,” in Proceedings of the 5th International Symposium on Technology and the Mine Problem, 2002.
  16. M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes, “Microwave dielectric behavior of wet soil—part II: dielectric mixing models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 23, no. 1, pp. 35–46, 1985. View at Google Scholar · View at Scopus
  17. C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.