Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013 (2013), Article ID 973813, 6 pages
http://dx.doi.org/10.1155/2013/973813
Research Article

Approximation for Transient of Nonlinear Circuits Using RHPM and BPES Methods

1Electronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltran S/N, Xalapa, 91000, VER, Mexico
2École Supérieure de Sciences et Techniques de Tunis (ESSTT), Université de Tunis, 63 rue Sidi Jabeur, 5100 Mahdia, Tunisia
3National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, 72840 Santa María Tonantzintla, PUE, Mexico
4Facultad de Ingenieria Civil, Universidad Veracruzana, Venustiano Carranza S/N, Col. Revolucion, C.P. 93390, Poza Rica, VER, Mexico

Received 20 December 2012; Accepted 19 January 2013

Academic Editor: Esteban Tlelo-Cuautle

Copyright © 2013 H. Vazquez-Leal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar
  2. J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73–79, 2003. View at Publisher · View at Google Scholar
  4. H. Vazquez-Leal, Y. Khan, G. Fernandez-Anaya et al., “A general solution for Troesch's problem,” Mathematical Problems in Engineering, vol. 2012, Article ID 208375, 14 pages, 2012. View at Publisher · View at Google Scholar
  5. H. Vazquez-Leal, A. Sarmiento-Reyes, Y. Khan, U. Filobello-Niño, and A. Diaz-Sanchez, “Rational biparameter homotopy perturbation method and laplace-padé coupled version,” Journal of Applied Mathematics, vol. 2012, Article ID 923975, 21 pages, 2012. View at Publisher · View at Google Scholar
  6. H. Vázquez-Leal, “Rational homotopy perturbation method,” Journal of Applied Mathematics, vol. 2012, Article ID 490342, 14 pages, 2012. View at Publisher · View at Google Scholar
  7. Y. Khan, H. Vázquez-Leal, and L. Hernandez-Martínez, “Removal of noise oscillation term appearing in the nonlinear equation solution,” Journal of Applied Mathematics, vol. 2012, Article ID 387365, 9 pages, 2012. View at Publisher · View at Google Scholar
  8. U. Filobello-Nino, H. Vazquez-Leal, Y. Khan et al., “HPM applied to solve nonlinear circuits: a study case,” Applied Mathematical Sciences, vol. 6, no. 85–88, pp. 4331–4344, 2012. View at Google Scholar
  9. H. Vazquez-Leal, R. Castaneda-Sheissa, A. Yıldırım et al., “Biparameter homotopy-based direct current simulation of multistable circuits,” British Journal of Mathematics & Computer Science, vol. 2, no. 3, pp. 137–150, 2012. View at Google Scholar
  10. U. Filobello-Nino, Hector Vazquez-Leal, R. Castaneda-Sheissa et al., “An approximate solution of Blasius equation by using HPM method,” Asian Journal of Mathematics & Statistics, vol. 5, no. 2, Article ID 103923, pp. 50–59, 2012. View at Publisher · View at Google Scholar
  11. H. Vázquez-Leal, U. Filobello-Niño, R. Castañeda-Sheissa, L. Hernández-Martínez, and A. Sarmiento-Reyes, “Modified HPMs inspired by homotopy continuation methods,” Mathematical Problems in Engineering, vol. 2012, Article ID 309123, 19 pages, 2012. View at Publisher · View at Google Scholar
  12. H. Vazquez-Leal, R. Castaneda-Sheissa, U. Filobello-Nino, A. Sarmiento-Reyes, and J. S. Orea, “High accurate simple approximation of normal distribution integral,” Mathematical Problems in Engineering, vol. 2012, Article ID 124029, 22 pages, 2012. View at Publisher · View at Google Scholar
  13. Y. Khan, H. Vázquez-Leal, L. Hernandez-Martínez, and N. Faraz, “Variational iteration algorithm-II for solving linear and non-linear ODEs,” International Journal of the Physical Sciences, vol. 7, no. 25, pp. 3099–4002, 2012. View at Google Scholar
  14. J. H. He, “Variational iteration method—a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999. View at Google Scholar · View at Scopus
  15. J. H. He, “Variational iteration method—some recent results and new interpretations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 3–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115–123, 2000. View at Google Scholar · View at Scopus
  17. M. Agida and A. S. Kumar, “A Boubaker polynomials expansion scheme solution to random Love's equation in the case of a rational Kernel,” Electronic Journal of Theoretical Physics, vol. 7, no. 24, pp. 319–326, 2010. View at Google Scholar · View at Scopus
  18. A. Yildirim, S. T. Mohyud-Din, and D. H. Zhang, “Analytical solutions to the pulsed Klein-Gordon equation using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES),” Computers and Mathematics with Applications, vol. 59, no. 8, pp. 2473–2477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Ghanouchi, H. Labiadh, and K. Boubaker, “An attempt to solve the heat transfer equation in a model of pyrolysis spray using 4q-order m-boubaker polynomials,” International Journal of Heat and Technology, vol. 26, no. 1, pp. 49–53, 2008. View at Google Scholar · View at Scopus
  20. S. Slama, J. Bessrour, K. Boubaker, and M. Bouhafs, “A dynamical model for investigation of A3 point maximal spatial evolution during resistance spot welding using Boubaker polynomials,” The European Physical Journal Applied Physics, vol. 44, no. 3, pp. 317–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Slama, M. Bouhafs, and K. B. Mahmoud, “A boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding,” International Journal of Heat and Technology, vol. 26, no. 2, pp. 141–146, 2008. View at Google Scholar
  22. S. Lazzez, K. B. Ben Mahmoud, S. Abroug, F. Saadallah, and M. Amlouk, “A Boubaker polynomials expansion scheme (BPES)-related protocol for measuring sprayed thin films thermal characteristics,” Current Applied Physics, vol. 9, no. 5, pp. 1129–1133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Ghrib, K. Boubaker, and M. Bouhafs, “Investigation of thermal diffusivitymicrohardness correlation extended to surface-nitrured steel using Boubaker polynomials expansion,” Modern Physics Letters B, vol. 22, no. 29, pp. 2893–2907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Fridjine, K. B. Ben Mahmoud, M. Amlouk, and M. Bouhafs, “A study of sulfur/selenium substitution effects on physical and mechanical properties of vacuum-grown ZnS1-xSex compounds using Boubaker polynomials expansion scheme (BPES),” Journal of Alloys and Compounds, vol. 479, no. 1-2, pp. 457–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Khélia, K. Boubaker, T. B. Nasrallah, M. Amlouk, and S. Belgacem, “Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion,” Journal of Alloys and Compounds, vol. 477, no. 1-2, pp. 461–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. B. Mahmoud and M. Amlouk, “The 3D Amlouk-Boubaker expansivity-energy gap-Vickers hardness abacus: a new tool for optimizing semiconductor thin film materials,” Materials Letters, vol. 63, no. 12, pp. 991–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Dada, O. B. Awojoyogbe, and K. Boubaker, “Heat transfer spray model: an improved theoretical thermal time-response to uniform layers deposit using Bessel and Boubaker polynomials,” Current Applied Physics, vol. 9, no. 3, pp. 622–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. H. A. E. Tabatabaei, T. Zhao, O. B. Awojoyogbe, and F. O. Moses, “Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme,” Heat and Mass Transfer, vol. 45, no. 10, pp. 1247–1251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Belhadj, J. Bessrour, M. Bouhafs, and L. Barrallier, “Experimental and theoretical cooling velocity profile inside laser welded metals using keyhole approximation and Boubaker polynomials expansion,” Journal of Thermal Analysis and Calorimetry, vol. 97, no. 3, pp. 911–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Belhadj, O. F. Onyango, and N. Rozibaeva, “Boubaker polynomials expansion scheme-related heat transfer investigation inside keyhole model,” Journal of Thermophysics and Heat Transfer, vol. 23, no. 3, pp. 639–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Barry and A. Hennessy, “Meixner-type results for Riordan arrays and associated integer sequences,” Journal of Integer Sequences, vol. 13, no. 9, pp. 1–34, 2010. View at Google Scholar · View at Scopus
  32. A. S. Kumar, “An analytical solution to applied mathematics-related Love's equation using the Boubaker polynomials expansion scheme,” Journal of the Franklin Institute, vol. 347, no. 9, pp. 1755–1761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Fridjine and M. Amlouk, “A new parameter: an ABACUS for optimizig functional materials using the Boubaker polynomials expansion scheme,” Modern Physics Letters B, vol. 23, no. 17, pp. 2179–2191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Benhaliliba, C. E. Benouis, K. Boubaker, M. Amlouk, and A. Amlouk, “A new guide to thermally optimized doped oxides monolayer spray-grown solar cells: the amlouk-boubaker optothermal expansivity Ψab,” in Solar Cells—New Aspects and Solutions, L. A. Kosyachenko, Ed., pp. 27–41, InTech, 2011. View at Google Scholar
  35. A. Milgram, “The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem,” Journal of Theoretical Biology, vol. 271, no. 1, pp. 157–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Rahmanov, “A solution to the non lLinear korteweg-de-vries equation in the particular case dispersion-adsorption problem in porous media using the spectral boubaker polynomials expansion scheme (BPES),” Studies in Nonlinear Sciences, vol. 2, no. 1, pp. 46–49, 2011. View at Google Scholar
  37. M. Koksal and S. Herdem, “Analysis of nonlinear circuits by using differential Taylor transform,” Computers and Electrical Engineering, vol. 28, no. 6, pp. 513–525, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Filobello-Nino, H. Vazquez-Leal, Y. Khan et al., “Perturbation method and Laplace-Padé approximation to solve nonlinear problems,” Miskolc Mathematical Notes. In press.
  39. H. Vazquez-Leal, U. Filobello-Nino, A. Yildirim et al., “Transient and DC approximate expressions for diode circuits,” IEICE Electronics Express, vol. 9, no. 6, pp. 522–530, 2012. View at Publisher · View at Google Scholar
  40. H. Vazquez-Leal, L. Hernandez-Martinez, A. Sarmiento-Reyes, R. Castañeda-Sheissa, and A. Gallardo-Del-Angel, “Homotopy method with a formal stop criterion applied to circuit simulation,” IEICE Electronics Express, vol. 8, no. 21, pp. 1808–1815, 2011. View at Publisher · View at Google Scholar
  41. H. Vazquez-Leal, L. Hernandez-Martinez, and A. Sarmiento-Reyes, “Double-bounded homotopy for analysing nonlinear resistive circuits,” in Proceeding of the IEEE International Symposium on Circuits and Systems (ISCAS '05), pp. 3203–3206, Kobe, Japan, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Vazquez-Leal, L. Hernandez-Martinez, A. Sarmiento-Reyes, and R. Castañeda-Sheissa, “Numerical continuation scheme for tracing the double bounded homotopy for analysing nonlinear circuits,” in Proceedings of the International Conference on Communications, Circuits and Systems, pp. 1122–1126, Hong Kong, China, May 2005. View at Scopus
  43. W. H. Enright, K. R. Jackson, S. P. Norsett, and P. G. Thomsen, “Interpolants for runge-kutta formulas,” ACM Transactions on Mathematical Software, vol. 12, no. 3, pp. 193–218, 1986. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Fehlberg, “Klassischerunge-kutta-formelnvierter und niedrigererordnung mitschrittweiten-kontrolle und ihreanwendung auf waermeleitungsprobleme,” Computing, vol. 6, no. 1-2, pp. 61–71, 1970. View at Publisher · View at Google Scholar
  45. E. Tlelo-Cuautle, J. M. Muñoz-Pacheco, and J. Martínez-Carballido, “Frequency scaling simulation of Chua's circuit by automatic determination and control of step-size,” Applied Mathematics and Computation, vol. 194, no. 2, pp. 486–491, 2007. View at Publisher · View at Google Scholar
  46. L. Portero, A. Arrarás, and J. C. Jorge, “Variable step-size fractional step Runge-Kutta methods for time-dependent partial differential equations,” Applied Numerical Mathematics, vol. 62, no. 10, pp. 1463–1476, 2012. View at Publisher · View at Google Scholar