Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2014, Article ID 124136, 12 pages
http://dx.doi.org/10.1155/2014/124136
Research Article

Application of Hybrid MOPSO Algorithm to Optimal Reactive Power Dispatch Problem Considering Voltage Stability

State Key Laboratory of Hybrid Process Industry Automation System and Equipment Technology, China Iron & Steel Research Institute Group, Beijing 100081, China

Received 20 March 2014; Revised 26 May 2014; Accepted 29 May 2014; Published 18 June 2014

Academic Editor: John N. Sahalos

Copyright © 2014 Yujiao Zeng and Yanguang Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kessel and H. Glavitsch, “Estimating the voltage stability of a power system,” IEEE Transactions on Power Delivery, vol. 1, no. 3, pp. 346–354, 1986. View at Google Scholar · View at Scopus
  2. S. S. Sachdeva and R. Billinton, “Optimum network VAR planning by nonlinear programming,” IEEE Transactions on Power Apparatus and Systems, vol. 92, no. 4, pp. 1217–1225, 1973. View at Google Scholar · View at Scopus
  3. N. Grudinin, “Reactive power optimization using successive quadratic programming method,” IEEE Transactions on Power Systems, vol. 13, no. 4, pp. 1219–1225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. G. T. Hyedt and W. M. Grady, “Optimal Var sitting using linear load flow formulation,” IEEE Transactions on Power Apparatus and Systems, vol. 92, no. 5, pp. 1214–1222, 1983. View at Google Scholar
  5. S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Transactions on Power Systems, vol. 9, no. 1, pp. 136–146, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Iba, “Reactive power optimization by genetic algorithm,” IEEE Transactions on Power Systems, vol. 9, no. 2, pp. 685–692, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. H. Wu and J. T. Ma, “Power system optimal reactive power dispatch using evolutionary programming,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1243–1249, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” IEEE Transactions on Power Systems, vol. 15, no. 4, pp. 1232–1239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Varadarajan and K. S. Swarup, “Differential evolutionary algorithm for optimal reactive power dispatch,” International Journal of Electrical Power and Energy Systems, vol. 30, no. 8, pp. 435–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Dai, W. Chen, Y. Zhu, and X. Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1218–1231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Duman, Y. Sönmez, U. Güvenc, and N. Yörükeren, “Optimal reactive power dispatch using a gravitational search algorithm,” IET Generation, Transmission & Distribution, vol. 6, no. 6, pp. 563–576, 2012. View at Google Scholar
  12. P. K. Roy, S. P. Ghoshal, and S. S. Thakur, “Optimal VAR control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830–838, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength Pareto evolutionary algorithm,” Tech. Rep. 103, Computer Engineering and Networks Laboratory, ETH, Zurich, Switzerland, 2001. View at Google Scholar
  15. D. W. Corne, N. R. Jerram, and J. D. Knowles, “PEAS-II: region-based selection in evolutionary multiobjective optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '01), pp. 283–290, Morgan Kaufmann, 2001.
  16. H. Li and Q. Zhang, “Multiobjective optimization problems with complicated pareto sets, MOEA/ D and NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995. View at Scopus
  18. C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 256–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Sierra and C. A. C. Coello, “Multiobjective particle swarm optimizer: a survey of the state-of-the-art,” International Journal of Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006. View at Google Scholar
  20. S.-Z. Zhao and P. N. Suganthan, “Two-lbests based multi-objective particle swarm optimizer,” Engineering Optimization, vol. 43, no. 1, pp. 1–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Abido and J. M. Bakhashwain, “Optimal VAR dispatch using a multiobjective evolutionary algorithm,” International Journal of Electrical Power and Energy Systems, vol. 27, no. 1, pp. 13–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Li, Y. Li, and J. Chen, “Adaptive multiple evolutionary algorithms search for multi-objective optimal reactive power dispatch,” International Transactions on Electrical Energy Systems, 2013. View at Publisher · View at Google Scholar
  23. H. Singh and L. Srivastava, “Modified differential evolution algorithm for multi-objective VAR management,” International Journal of Electrical Power & Energy Systems, vol. 55, pp. 731–740, 2014. View at Google Scholar
  24. L. Zhihuan, L. Yinhong, and D. Xianzhong, “Non-dominated sorting genetic algorithm-II for robust multi-objective optimal reactive power dispatch,” IET Generation, Transmission and Distribution, vol. 4, no. 9, pp. 1000–1008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Jeyadevi, S. Baskar, C. K. Babulal, and M. Willjuice Iruthayarajan, “Solving multiobjective optimal reactive power dispatch using modified NSGA-II,” International Journal of Electrical Power and Energy Systems, vol. 33, no. 2, pp. 219–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Medina, C. A. Coello Coello, and J. M. Ramirez, “Reactive power handling by a multi-objective teaching learning optimizer based on decomposition,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 1–9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Niknam, M. R. Narimani, R. Azizipanah-Abarghooee, and B. Bahmani-Firouzi, “Multiobjective optimal reactive power dispatch and voltage control: a new opposition-based self-adaptive modified gravitational search algorithm,” IEEE Systems Journal, vol. 7, no. 4, pp. 742–753, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Abido, “Multiobjective particle swarm optimization for optimal power flow problem,” in Proceedings of the 12th International Middle East Power System Conference (MEPCON '08), pp. 392–396, Aswan, Egypt, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Niknam, M. R. Narimani, J. Aghaei, and R. Azizipanah-Abarghooee, “Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index,” IET Generation, Transmission and Distribution, vol. 6, no. 6, pp. 515–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. Van Veldhuizen and G. B. Lamont, “On measuring multiobjective evolutionary algorithm performance,” in Proceedings of the Congress on Evolutionary Computation (CEC '00), pp. 204–211, La Jolla, Calif, USA, July 2000. View at Scopus
  31. S. Bandyopadhyay, S. K. Pal, and B. Aruna, “Multiobjective GAs, quantitative indices, and pattern classification,” IEEE Transactions on Systems, Man, and Cybernetics, B: Cybernetics, vol. 34, no. 5, pp. 2088–2099, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance assessment of multiobjective optimizers: an analysis and review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the IEEE International Congress on Evolutionary Computation, vol. 3, pp. 101–106, Washington, DC, USA, 1999.
  34. A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Luo, J. Zheng, J. Xie, and J. Wu, “Dynamic crowding distance—a new diversity maintenance strategy for MOEAs,” in Proceedings of the 4th International Conference on Natural Computation (ICNC '08), pp. 580–585, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C.-L. Sun, J.-C. Zeng, and J.-S. Pan, “A particle swarm optimization with feasibility-based rules for mixed-variable optimization problems,” in Proceedings of the 9th International Conference on Hybrid Intelligent Systems (HIS '09), pp. 543–547, Shenyang, China, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2–4, pp. 311–338, 2000. View at Google Scholar · View at Scopus
  38. O. Rudenko and M. Schoenauer, “A steady performance stopping criterion for Pareto based evolutionary algorithm,” in Proceedings of the International Conference on Multiobjective Programming and Goal Programming, Hammamet, Tunisia, 2004.
  39. R. Zimmerman, C. E. Murillo Sanchez, and D. Gan, MATPOWER 3.0: A Matlab Power System Simulation Package, Cornell University Press, Ithaca, NY, USA, 1997, http://www.pserc.cornell.edu//matpower/.
  40. O. Alsac and B. Stott, “Optimal load flow with steady state security,” IEEE Transactions on Power Apparatus and Systems, no. 3, pp. 745–751, 1974. View at Google Scholar · View at Scopus
  41. K. Y. Lee, Y. M. Park, and J. L. Ortiz, “A united approach to optimal real and reactive power dispatch,” IEEE Transactions on Power Apparatus and Systems, vol. 104, no. 5, pp. 1147–1153, 1985. View at Google Scholar · View at Scopus
  42. J. G. Vlachogiannis and K. Y. Lee, “A comparative study on particle swarm optimization for optimal steady-state performance of power systems,” IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1718–1728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Christie, Power System Test Case Archive, University of Washington, 1993, http://www.ee.washington.edu/research/pstca/.
  44. K. Vaisakh and L. R. Srinivas, “Adaptive PSODV algorithm for OPF with non-smooth cost functions and statistical analysis,” Simulation Modelling Practice and Theory, vol. 19, no. 9, pp. 1824–1846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Shaw, V. Mukherjee, and S. P. Ghoshal, “Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm,” International Journal of Electrical Power & Energy Systems, vol. 55, pp. 29–40, 2014. View at Google Scholar