Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2014 (2014), Article ID 836019, 10 pages
http://dx.doi.org/10.1155/2014/836019
Research Article

Near-Threshold Computing and Minimum Supply Voltage of Single-Rail MCML Circuits

Institute of Micro-Nano Electronic Systems, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China

Received 31 August 2013; Revised 8 December 2013; Accepted 24 December 2013; Published 12 February 2014

Academic Editor: Mohamad Sawan

Copyright © 2014 Ruiping Cao and Jianping Hu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Yamashina and H. Yamada, “An MOS current mode logic (MCML) circuit for low-power sub-GHz processor,” IEICE Transactions on Electronics, vol. 75, no. 3, pp. 1181–1187, 1992. View at Google Scholar
  2. A. Tanabe, M. Umetani, I. Fujiwara et al., “0.18-μm CMOS 10-Gb/s multiplexer/demultiplexer ICs using current mode logic with tolerance to threshold voltage fluctuation,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 988–996, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Ni and Z. Li, “High-speed low-power MCML nanometer circuits with near-threshold computing,” Journal of Computers, vol. 8, no. 1, pp. 129–135, 2013. View at Google Scholar
  4. J. M. Musicer and J. Rabaey, “MOS Current Mode Logic for low power, low noise CORDIC computation in mixed-signal environments,” in Proceedings of the Symposium on Low Power Electronics and Design (ISLPED '00), pp. 102–107, July 2000. View at Scopus
  5. J. Hu and X. Yu, “Low voltage and low power pulse flip-flops in nanometer CMOS processes,” Current Nanoscience, vol. 8, no. 1, pp. 102–107, 2012. View at Google Scholar · View at Scopus
  6. Y. Wu and J. Hu, “Low-voltage MOS current mode logic for low-power and high speed applications,” Information Technology Journal, vol. 10, no. 12, pp. 2470–2475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Anis and M. I. Elmasry, “Power reduction via an MTCMOS implementation of MOS current mode logic,” in Proceedings of the IEEE International ASIC/SOC Conference, pp. 193–197, 2002.
  8. J. B. Kim, “Low-power MCML circuit with sleep-transistor,” in Proceedings of the 8th IEEE International Conference on ASIC (ASICON '09), pp. 25–28, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Alioto and G. Palumbo, “Design strategies for source coupled logic gates,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 5, pp. 640–654, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Hassan, M. Anis, and M. Elmasry, “MOS current mode circuits: analysis, design, and variability,” IEEE Transactions on Very Large Scale Integration Systems, vol. 13, no. 8, pp. 885–898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Alioto, L. Pancioni, S. Rocchi, and V. Vignoli, “Modeling and evaluation of positive-feedback source-coupled logic,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 12, pp. 2345–2355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Cao and J. Hu, “Near-threshold computing of single-rail current mode logic circuits,” Research Journal of Applied Sciences, Engineering and Technology, vol. 5, no. 10, pp. 2991–2996, 2013. View at Google Scholar
  13. O. Musa and M. Shams, “An efficient delay model for MOS current-mode logic automated design and optimization,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 8, pp. 2041–2052, 2010. View at Publisher · View at Google Scholar · View at Scopus