Journal of Electrical and Computer Engineering

Journal of Electrical and Computer Engineering / 2017 / Article
Special Issue

Machine Intelligence in Signal Sensing, Processing, and Recognition

View this Special Issue

Editorial | Open Access

Volume 2017 |Article ID 6168207 | 2 pages | https://doi.org/10.1155/2017/6168207

Machine Intelligence in Signal Sensing, Processing, and Recognition

Received25 Jul 2017
Accepted25 Jul 2017
Published06 Sep 2017

In recent years, machine intelligence has become a well-established research area and attracted a number of researchers in many science and engineering fields, for example, robotics, artificial intelligence, big data, IoT, and smart things. Many communities such as signal processing, intelligent sensing, image/video processing, computer vision, machine learning, deep learning, transfer learning, extreme learning machine, and representational learning are playing important role in machine intelligence [14]. The common goal is to develop new techniques and algorithms for making more intelligent things that can provide more comfortable living conditions for the world.

In general, conventional machine intelligence includes three phases, such as signal sensing, signal processing, and signal recognition, which are also termed as low-level acquisition, middle-level representation, and high-level analysis. Beyond the conventional intelligence, artificial intelligence also integrates the elements of rich big data, high computational ability, efficient learning algorithms, Internet, and chips. Learning algorithms play a critical role in AI developments. A number of researchers from different fields, such as computer vision, natural language processing, remote sensing, medical diagnosis, smart grid, and system control, have been attracted by the popular deep learning algorithms. Further research on signal sensing, processing, and recognition can be investigated and proposed for providing more perspective in machine intelligence.

In this special issue, novel treatments and applications of signal processing and machine learning algorithms have been explored in different fields, including speaker recognition, environmental data analysis, remote sensing data modeling, fault diagnosis, and computer vision. Algorithms such as extreme learning machine, Bayesian inference, Bayesian network, least square regression, and wavelets have been exploited. This special issue provides readers with new insight about signal based sensing, processing, and recognition in machine intelligence topics, which are highly interesting and scientifically valid.

Lei Zhang
Sunil Kr. Jha
Zhixin Yang
Zhenbing Zhao
Bhupendra Nath Tiwari

References

  1. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. View at: Publisher Site | Google Scholar
  2. G.-B. Huang, “What are extreme learning machines? Filling the gap between Frank Rosenblatt's dream and John Von Neumann's puzzle,” Cognitive Computation, vol. 7, no. 3, pp. 263–278, 2015. View at: Publisher Site | Google Scholar
  3. L. Zhang, W. Zuo, and D. Zhang, “LSDT: latent sparse domain transfer learning for visual adaptation,” IEEE Transactions on Image Processing, vol. 25, no. 3, pp. 1177–1191, 2016. View at: Publisher Site | Google Scholar | MathSciNet
  4. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review and new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. View at: Publisher Site | Google Scholar

Copyright © 2017 Lei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

840 Views | 470 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.